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PREFACE 

The s tudy  of t he  e a r t h D s  atmosphere has a t t r a c t e d  

t he  t a l e n t s  of many i n v e s t i g a t o r s .  The au thor  hopes t h a t  

t h i s  r e s e a r c h  i s  n o t  an unworthy c o n t r i b u t i o n  t o  t h i s  

f i e l d  of s c i e n t i f i c  i n v e s t i g a t i o n .  

During t h e  conduct of t h i s  r e sea rch  t h e  au thor  has  

r ece ived  cons ide rab l e  a i d  from s e v e r a l  i n d i v i d u a l s .  S ince  

many numerical  c a l c u l a t i o n s  were performed,  it was neces -  

s a r y  t o  develop a  l a r g e  number of computer programs. 

During t h i s  phase of the  r e sea rch ,  Melvin J .  A r d l t  and 

E .  0 .  Smith of t he  Lockheed E l e c t r o n i c s  Company were most 

h e l p f u l  and the  au thor  wishes t o  express  h i s  a p p r e c i a t i o n .  

The author  has been very f o r t u n a t e  s i n c e  an unusual  

s e t  of c i .  cumstances* has l e a d  t o  t h e  completion of t h i s  

r e s e a r c h .  The au thor  wishes t o  express  h i s  g r a t i t u d e  t o  

.t Henry P .  Decel l  of t h e  Un ive r s i t y  of Houston and Jay  M. 

Lewallen of the  Manned Spacec ra f t  Center f o r  p rov id ing  

t h e  oppor tun i ty  t o  complete t h i s  r e sea rch .  I n  a d d i t i o n ,  

D r .  Dece l l  and D r .  Lewallen have made many h e l p f u l  

W 

The author  completed t h i s  r e s e a r c h  whi le  on a c t i v e  
duty  i n  t he  U.S. Army and ass igned  t o  t he  Theory and 
Analys i s  Of f i ce  of t h e  Manned Spacec ra f t  Center  i n  Houston, 
Texas. 

' ~ o r r n e r l ~  Chief of t h e  Theory and Analysis  O f f i c e  of 
t h e  Manned Spacec ra f t  Center .  
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ABSTRACT 

The problem of smal l  o s c i l l a t i o n s  of an i so thermal  

atmosphere i s  i n v e s t i g a t e d .  The assumptions of s m a l l ,  

two-dimensional waves i n  a  v i s cous ,  compress ible ,  

s t r a t i f i e d  f l u i d  w i t h  a  c o n s t a n t  dynamic v i s c o s i t y  

c o e f f i c i e n t  p l e ads  t o  a  l i n e a r  system of two second- 

o r d e r ,  o rd inary  d i f f e r e n t i a l  equa t ions  i n  t h e  v e r t i c a l  

z coo rd ina t e .  

I n  so lv ing  t h e  v i scous  problem f o r  smal l  p > 0 

i t  i s  found t h a t  t h e r e  i s  an i n v i s c i d  r eg ion  i n  which t h e  

s o l u t i o n  behaves l i k e  a  l i n e a r  combination of i n v i s c i d  

( v  = 0 )  s o l u t i o n s .  S e v e r a l  i n t e r e s t i n g  ca se s  develop 

depending on t h e  va lues  of  t h e  frequency a and h o r i -  

zon t a l  wave number k . The most i n t e r e s t i n g  case  

concerns t he  viscous  s o l u t i o n  f o r  those  va lues  of a and 

k  which l ead  t o  t h e  development of i n v i s c i d  s o l u t i o n s  

which a r e  wavelike i n  z  . For t h i s  case  t he  v i scous  

s o l u t i o n  does no t  s a t i s f y  t h e  r a d i a t i o n  cond i t i on  i n  t he  

i n v i s c i d  reg ion  s i n c e  v i s c o s i t y  r e f l e c t s  waves i n  a d d i t i o n  

t o  damping wave motion f o r  l a r g e  z  . Thus, t h e  c o r r e c t  

s o l u t i o n  of t he  i n v i s c i d  problem c o n s i s t s  of an i n c i d e n t  

and a  r e f l e c t e d  wave. As + 0 t h e  r a t i o  of t h e  ampli-  

tudes  of t he  i n c i d e n t  and r e f l e c t e d  waves approaches a  

l i m i t i n g  va lue  f o r  each f i x e d  z i n  the  i n v i s c i d  r eg ion .  



However, the  v i scous  s o l u t i o n  does no t  approach a  l i m i t i n g  

va lue  s i n c e  the  r e f l e c t i n g  l a y e r  s h i f t s  t o  i n f i n i t y  

as  p + 0 and thus  a l t e r s  the  phase of t h e  r e f l e c t e d  wave. 

The remaining cases  a r e  i n v e s t i g a t e d  and s e v e r a l  

numer ica l ly  computed s o l u t i o n s  a r e  determined.  On t h e  

b a s i s  of t h e  computat ions ,  t h e  v a l i d i t y  of t he  l i n e a r i z a -  

t i o n  i s  a l s o  d i scussed .  
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1. INTRODUCTION 

I n  t h e  s t u d y  of  a t m o s p h e r i c  waves,  a  model which i s  

f r e q u e n t l y  e n c o u n t e r e d  i s  one o f  waves i n  an  i d e a l  com- 

p r e s s i b l e  f l u i d  i n  a  h a l f - s p a c e ,  w i t h  a  s p e c i f i e d  v e r t i c a l  

t e m p e r a t u r e  p r o f i l e  ( s e e  e . g .  [ I ] ) .  For  t h e  l i n e a r i z e d  

i s o t h e r m a l  problem t h e  v a r i a b l e s  a r e  s e p a r a b l e  and a  

sys t em of  two f i r s t - o r d e r ,  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  

i n  t h e  v e r t i c a l  z - c o o r d i n a t e  i s  o b t a i n e d .  

There  i s  l i t t l e  d i f f i c u l t y  i n  d e t e r m i n i n g  a  f u n d a -  

m e n t a l  s e t  of  s o l u t i o n s  s i n c e  t h e  c o e f f i c i e n t  m a t r i x  i s  

c o n s t a n t .  However, t h e  v e l o c i t y  components of  b o t h  s o l u -  

t i o n s  a r e  n o t  u n i f o r m l y  bounded f o r  a l l  z and ,  h e n c e ,  

v i o l a t e  t h e  a s sumpt ions  u n d e r l y i n g  t h e  l i n e a r i z a t i o n .  

For t h e  problem of f o r c e d  o s c i l l a t i o n s  two c o n d i -  

t i o n s  must  be  imposed t o  s p e c i f y  a  un ique  s o l u t i o n .  One 

c o n d i t i o n  i s  o b t a i n e d  f o r  t h e  v e r t i c a l  v e l o c i t y  a t  t h e  

ground by  assuming t h a t  t h e  f l u i d  m a i n t a i n s  c o n t a c t  w i t h  

t h e  lower  boundary z  = 0 and a n o t h e r  c o n d i t i o n  must be  

o b t a i n e d .  

F o r  c e r t a i n  v a l u e s  of  t h e  f r e q u e n c y  a and h o r i -  

z o n t a l  wave number k  , one i n v i s c i d  s o l u t i o n  h a s  f i n i t e  

k i n e t i c  ene rgy  i n  an i n f i n i t e  column of  f l u i d  o f  f i n i t e  

c r o s s  s e c t i o n ,  and t h e  o t h e r  s o l u t i o n  h a s  i n f i n i t e  k i n e t i c  

e n e r g y .  For  t h i s  c a s e  i t  i s  r e a s o n a b l e  t o  s e l e c t  t h e  

s o l u t i o n  w i t h  f i n i t e  k i n e t i c  e n e r g y ,  Thus, a un ique  



solution of the inviscid problem can be obtained by 

imposing this additional requirement. The solution for 

this case is of the form 

where k > 0, o > 0 and R is real, u(x,z ,t) is the hori- 

zontal velocity component, ~i (x , z , t) is the vertical 

velocity component, and A and B are constants. The 

solution thus propagates in a horizontal x-direction. 

If other values of o and k are considered it is 

possible to find two solutions with oblique lines of con- 

stant phase: 

where R, k ,  6 and a are all positive. Both solutions 

have infinite kinetic energy. Since one of the solutions 

has upward energy flux and the other has downward energy 

propagation, it is possible to determine a unique solu- 

tion to the inviscid problem by neglecting the solution 

with downward energy propagation. This assumption seems 

reasonable since all the energy is being supplied by the 

lower boundary. However, it must be assumed that reflec- 

tion of the wave with upward energy flux is negligible, 



This assumption (no reflection) will be called the radia- 

tion condition. 

Recently Yanowitch [ 2 ]  considered a similar 

problem: two-dimensional waves in an isothermal, incom- 

pressible fluid occupying the upper half-space with a den- 

sity distribution which decreased exponentially with 

increasing altitude. By examining the viscous problem for 

a constant dynamic viscosity coefficient y , Yanowitch 

was able to introduce a reasonable requirement on the dis- 

sipation of energy due to viscosity, which he called the 

"dissipation condition. " This condition requires the 

solution of the viscous problem to dissipate only a finite 

amount of energy in a column per period of oscillation of 

the lower boundary. The dissipation condition, the no- 

slip condition (u = 0 at z = O ) ,  and the boundary condi- 

tion on w at z = 0 are sufficient to prescribe a 

unique solution for every small p > 0 . Yanowitch then 

analyzed the viscous problem as y tended to zero. He 

was able to show that the inviscid solution with finite 

kinetic energy is app hed uniformly, on an interval 

+ 0 ; if the parameters a and 

ield one invis ution with finite kinetic energy 

and another with i kinetic energy. For other 

values of a and k which yield two inviscid solutions 

with oblique lines of phace propagation and both having 



infinite kinetic energy, he was able to show that the 

reflection of waves is not always negligible. More pre- 

cisely, he was able to show that the reflection coeffi- 

cient, K (ratio of the amplitudes of the incident and 
R 

reflected waves), satisfied 

where B = - 2TM , H is the density scale height and !L R 
I is the vertical wavelength. The reflection in 

Yanowitch's problem was due to a relatively thin layer 

which receded to infinity as + 0 . Thus, rR did not 

approach a limiting value, i.e., arg rR varied as 

+ 0 . For an incompressible isothermal model of the 

atmosphere it appears that the inclusion of viscosity not 

only damps the wave motion for large z but is also 

capable of causing reflection. Since the wave motion is 

damped for large z , Yanowitch was also able to determine 

reasonable estimates for the amplitude of the oscillation 

of the lower boundary such that the viscous solution 

remained small for all z . Thus, viscosity also provided 

a justification of the linearization. 

'similar results were obtained by Yanowitch [3] for 
vertical oscillations of an isothermal, compressible atmos- 
phere. In addition, Lindzen [4] obtained a similar result 
for tidal waves in an isothermal atmosphere subject to 
Newtonian cooling. 



Clearly, compressibility should be included in a 

model of the earth's atmosphere. Thus, a natural exten- 

sion of Yanowitcll's approach would be to investigate two- 

dimensional, linearized wave motion in a viscous, 

isothermal, compressible, stratified fluid occupying the 

upper half-space z > 0 . 
The incompressible and compressible models differ 

in several respects. The most notable difference is that 

the incompressible model has only a low frequency (gravity 

region) range of values for a such that the inviscid 

solutions are wavelike in z , whereas the compressible 

model has both a high frequency (acoustic region) and a 

low frequency (gravity region) range separated by an 

excluded region. In addition, the compressible model has 

inviscid solutions, for certain values of a and k , 

which are eigensolutions, or free oscillations. These 

solutions are the so-called Lamb waves and the incompres- 

sible model has no such solutions. Thus, for certain 

values of a and k a resonant situation will develop 

for the compressible model, and no resonant case is pos- 

sible for the incompressible model. 

Many of the results obtained by Yanowitch for the 

incompressible fluid model are also obtained in this 

thesis for a compressible fluid model. There is one sig- 

nificant exception: the magnitude of the reflection 



coefficient for the case of inviscid solutions which are 

wavelike in z depends on the horizontal wave number k . 
It was found that for the range of parameters considered, 

the reflection coefficient rR satisfies 

2 n H  , H is the density scale height, and R where 6 = - R 

is the vertical wavelength. In general, the magnitude of 

the gravity reflection coefficient more nearly equals 

e -" than does the acoustic reflection coefficient. If 

an error of 15 percent is tolerated then the magnitude of 

the gravity reflection coefficient can be considered 

approximately equal to e - for all k in the range of 

computations. The acoustic reflection coefficient has 

rather peculiar properties for k values which correspond 

to horizontal wavelengths of 7H to 30H. For example, if a 

horizontal wavelength of 13H (about 90 km) is considered, 

then the reflection coefficient is no longer monotonically 

decreasing as fi increases. If the horizontal wavelength 

is greater than 30H or less than 7 H ,  then e provides 

a reasonable approximation of the magnitude for both the 

acoustic and gravity reflection coefficients. A summary 

of the results for the case of inviscid solutions which 



are wavelike in z is provided in figures 2 through 7 in 

Section 5.2. 

In Section 2 the differential equations for linear- 

ized wave motion in a stratified compressible isothermal 

fluid are developed. A system of two second-order, ordi- 

nary differential equations in z (the altitude) are 

obtained if the fluid is assumed viscous but thermally 

nonconducting. The inviscid equations are also developed 

in Section 2 and a fundamental set of inviscid solutions 

are found. 

The remainder of this paper is concerned with an 

analysis of the viscous problem as the dynamic viscosity 

coefficient tends to zero. The most difficult mathemat- 

ical problem encountered is the so-called asymptotic con- 

tinuation problem (Section 4). The viscous problem is 

not completely analytically tractable2 and thus a numer- 

ical integration of the viscous ordinary differential 

equation was performed. Since the asymptotic continuation 

problem is inherently unstable (Section 4), a numerical 

integration is not a trivial procedure. A modification of 

 or the incompressible problem, which Yanowitch con- 
sidered [2], the corresponding differential equation is 
simple enough to make possible the determination of an 
integral representation of the solution. The asymptotic 
relations are then obtained from the integral representa- 
tion. A similar procedure was attempted for the compres- 
sible problem but it was unsuccessful. 



an a lgo r i t hm developed by Conte [ S ]  i s  con t a ined  i n  Sec-  

t i o n  4 .  I n  a d d i t i o n ,  an a n a l y s i s  of t he  e r r o r  i s  p e r -  

formed i n  S e c t i o n  4 which i s  no t  inc luded  i n  Conte ' s  

paper .  I n  f a c t ,  t h e  d e f i n i t i o n  of e r r o r  i s  r a t h e r  nove l .  

A summary of  a l l  t h e  computations and some concluding 

remarks a r e  i n  Sec t ion  5 .  



The complete set of equations governing two- 

dimensional flow in a viscous but thermally nonconducting 

fluid3 are: 

1-1 a 
1-1 Au + 3- (div ;) , (la) 

1-1 a > 

= 1-1 Aw + - - (div v) , (lb) 3 az 

a P 2 

- + div (pv) = 0 , at ( 1 ~ )  

and d 
-(PP-~> dt = 0 , (Id) 

where p is the density, u is the horizontal component 

of the velocity, w is the vertical component of the 
A 

velocity, v = [E] , and p is the pressure; also, y 

is the ratio of the specific heats, t is time, x is 

the horizontal space coordinate, z is the vertical 

3 ~ o r  a gas, viscosity and thermal conductivity are 
related [6, pp. 47-50] and, thus, it is inconsistent to 
assume a viscous but thermally nonconducting fluid. The 
model is very simple, but it still provides a qualitative 
description of reflection. 



space coordinate, g is the acceleration of gravity, 4 

p is the dynamic viscosity ~oefficient,~ and A is the 

a a two-dimensional Laplacian operator - + - Equa - 
ax2 a z 2 '  

tions (la) and (lb) are the Navier-Stokes equations, equa- 

tion (lc) is derived by assuming conservation of mass, and 

equation (ld) is the adiabatic law which neglects second- 

order dissipative terms. 

For small deviations from equilibrium the equa- 

tions (1) can be approximated by the linearized equations: 

- + -  - 1-I a au ap - IJ AU + - -  (div ;) , 
P O  at ax 3 ax 

aw 1-1 a A 

p o ~ + E +  gp = IJ Aw + - -  3 az (divv) , 

and 

where the variables without subscript are the perturbed 

values and the variables with the subscript zero are the 

4 ~ h e  acceleration of gravity g is assumed constant 
and, also, it is assumed to be the only body force acting 
on the fluid. 

5 ~ h e  dynamic viscosity coefficient is assumed 
small but constant. 



equilibrium values of these variables. The equilibrium 

values can be obtained from the following equations: 

and c2 = yRTO , (3c ) 

where R is the gas constant and the temperature To is 

assumed constant (isothermal) . 
If a scale height H is defined by 

then 

or 

and c = ygH (5~) 

If the  runt-~aisgls frequency is defined by 

then 



and 

2 a 3 

+ g - -  a W  c  - ( d i v  V )  + - a z a z hJ2c2 g ( d i v  ;)I 

and 

I f  t h e  f o l l o w i n g  v a r i a b l e s  a r e  i n t r o d u c e d  

u ( x , z , t )  = U ( z ) e  i (kx-ot) > (8 a  

w ( x , z , t )  = iW(z)e  i (kx-ot) J 

6 ( z )  = p 0 ( z ) / p g  , 

- z = z/H , 

E = k H ,  



into the differential equation (7) then a system of 

second-order differential equations is obtained: 

and p = e - 2  where ' = z- . The tilde has been omitted 

from the variables p ,  z, k and o in equation (9). No 

confusion should arise in what follorvs, since only the 

dimensionless variables will be considered. 

Equation (9) might arise if the periodic solution 

is desired when the lower boundary is forced to oscillate 

with frequency o . The fluid maintains contact with the 

lower boundary and, hence, must satisfy the no-slip condi- 

tion, U(0) = 9 . Without loss in generality, the oscil- 

lation of the lower boundary can be normalized so that 

r q o )  = 1 . 
The problem of forced oscillations is, of course, 

artificial and the boundary conditions 



and W(0) = 1 (lob) 

are only a part of the complete mathematical formulation. 

Only the effects of the "upper boundary" are going to be 

assessed, not the effects of the oscillating lower 

boundary. For this problem it is necessary only to inves- 

tigate a plane wave incident on the upper boundary; it is 

not necessary to examine a realistic mechanism for the 

development of such a wave. Thus, the boundary conditions 

(10) only provide a normalization of the solution of the 

viscous problem and are otherwise physically meaningless. 

In addition to the boundary conditions (lo), other 

requirements must be imposed in order to insure uniqueness 

of the solution of (9). The lower boundary is capable of 

performing only a finite amount of work per period of 

oscillation per unit area. Thus, it seems reasonable to 

require that only a finite amount of energy be dissipated 

in an infinite column of fluid of finite cross section. 

This condition will be referred to as the dissipation con- 

dition and denoted by DC. 

The local dissipation of energy depends on the 

dynamic viscosity and the squares of the space deriva- 

tives of u and w . Thus the DC is equivalent to 

requiring 



where k is assumed to be nonzero. 

Thus, the complete mathematical formulation of the 

viscous problem consists of a system of two second-order, 

linear, ordinary differential equations ( 9 ) ,  boundary con- 

ditions (10) and the DC (11). 

For p large and E small it is expected that the 

solution of the viscous problem can be approximately 

obtained by.considering E = 0 or u = 0 . If is set 

equal to zero in (2) and relations (3) through (6) and 

(8) are used then 

is obtained. 

The solutions of (12) are easily determined since 

the coefficient matrix is constant. The first step is to 

solve for the eigenvalues of the coefficient matrix. This 

leads to the dispersion relation 



and 

where h i s  an e igenvalue of t he  cons t an t  c o e f f i c i e n t  

mat r ix  i n  (12) .  The r o o t s  of the  d i s p e r s i o n  r e l a t i o n  (13) 

a r e  

and 

If a < $ i n  (13) ,  t hen  h l  and h 2  a r e  r e a l  and 

1 < - <  A 
2 1 ' 

The s o l u t i o n s  of t h e  i n v i s c i d  equa t ion  (12) 

a r e  of t h e  form 

f o r  0 2 / y  - k2  # 0 and 

and 



The solutions with the subscript 2 in relations 

(15) and (16) have finite kinetic energy in an infinite 

column of finite cross section, since 

1 (2X .-l)z 
l l u .  (z) 1 + Iwj ( z )  / p (z) = constant x e I 

I 1 
(17) 

1 and h 2  < . The solutions corresponding to the sub- 

script 1 have infinite kinetic energy since 1 X 1 > y  
7 

o L  For the case - - k2 = 0 the solution with finite 
Y 

kinetic energy, the so-called Lamb wave, is a free oscil- 

lation. FIence, for this case a resonant situation can be 

expected to develop. 

1 If a = then the dispersion relation (13) yields 

only one root. For this case the solutions of (12) have 

the form 

and 

Both solutions have infinite kinetic energy in an infinite 

column of fluid of finite cross section. 
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The most interesting case occurs when the roots of 

the dispersion relation (13) are complex. This occurs 

when 

where 

The roots of (13a) are then of the form 

Thus is a dimensionless vertical wave number. 

Figure I. - Inviscid dispersion relation 
for y = 1.4. 



The s o l u t i o n s  of  t h e  i n v i s c i d  d i f f e r e n t i a l  equa t i on  (12) 

a r e  wavel ike  i n  z i f  t h e  d imens ion less  pa ramete r s  a  

and k  have v a l u e s  which l i e  i n  t h e  shaded r e g i o n s  o f  

f i g u r e  1. The upper shaded r e g i o n  A i n  f i g u r e  1 i s  

r e f e r r e d  t o  a s  t h e  a c o u s t i c  r e g i o n  and t h e  lower shaded 

r e g i o n  G i s  c a l l e d  t h e  g r a v i t y  r e g i o n .  Both s o l u t i o n s  of 

1 (12) f o r  a > - a r e  of  t h e  form (15 ) .  Both s o l u t i o n s  4 

have c o n s t a n t  k i n e t i c  energy f o r  a l l  z and ,  hence ,  have 

i n f i n i t e  k i n e t i c  energy i n  a  column of f l u i d .  

I f  t he  group v e l o c i t i e s  of s o l u t i o n s  (15) f o r  com- 

p l e x  A; a r e  i n v e s t i g a t e d ,  t hen  it can be shown t h a t  
J r::::] has  an upward energy f l u x  f o r  02 /y  - k 2 > 0  and 

adownward energy f l u x  f o r  021y - k 2  < 0 ( see  [ 7 ] ) .  

S i m i l a r l y ,  ] can be shown t o  have a  downward 

2 energy f l u x  f o r  0 2 / y  - k  > 0 and an  upward energy f l u x  

f o r  0 2 / y  - k 2  < 0 . Thus, i n  t he  a c o u s t i c  r e g i o n  t h e  

v e r t i c a l  phase p ropaga t i on  and t h e  energy f l u x  a r e  i n  t h e  

same d i r e c t i o n  f o r  s o l u t i o n s  ( I S ) ,  and f o r  t h e  g r a v i t y  

r e g i o n  t h e  v e r t i c a l  phase p ropaga t ion  and t h e  energy f l u x  

a r e  i n  o p p o s i t e  d i r e c t i o n s .  

I t  i s  wor th  n o t i n g  t h a t  i n  some pub1icat ion .s  p r i o r  

t o  Yanowitchts  paper [2 ]  t h e  upward- and downward-going 

waves a r e  handled s e p a r a t e l y ,  t h a t  i s ,  l i n e a r  combinations 



of the two solutions are not considered. It appears that 

the tacit assumption regarding t h i s  wave motion is that 

reflection does not occur. 

In the following sections the differential equa- 

tion (9) will be investigated subject to the boundary 

conditions (10) and the DC (11). The solution of the vis- 

cous problem will be investigated in the limit as E + 0 

(or .I -+ 0) and also for a value E = 10 -11 , which is 

comparable to the value in the earth's atmosphere. The 

object is to obtain some insight into the correct formula- 

tion of the inviscid problem (.I r 0). 



3. REFORMULATION AND DISCUSSION OF THE VISCOUS PROBLEM 

3.1 REFORMULATION 

It will be convenient to introduce a new indepen- 

dent dimensionless variable 5 , defined by 

The differential equation (9) then takes the form 

where d . The boundary conditions (10) z 0 = 5 = - ; r  
become 

where - 1 5, - - i r a  
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Thus, as E -+ 0 through positive values + along 

'Tr the ray arg 
= -?- . Any bounded region, 

0 < A 5 z B < a , is restricted to a line segment on 

1 I the ray arg 5 = -- 2 and as E -+ 0 the line segment 

shifts to infinity. Hence, an investigation of (9) as 

E -+ 0 on 0 < A 5 z ( B < is equivalent to an investi- 

gation of (22) for large 5 . 



and 

then d - 1 (I + K S - - (R + SD)y(S). 5 (25) 

Equation (25) has regular singularities at < = 0 and 

4 < = - 
3 and an irregular singularity at < = . The vis- 

cous problem, formulated in Section 2, can be restated in 

terms of the new <-variable. The problem is to investi- 

IT gate solutions of equation (25) on the ray arg < = -- 
2 ' 

which satisfy the boundary condition (23) and the DC (11) 

as r + O .  

Near < = 0 there exist solutions of equation (25) 

which exhibit the scalar growths tk, (En <)ck, <-", and 

(Ln as 5 + 0 (see Appendix A) . Only the 



solutions which grow like tk and (en 5)tk satisfy the 

DC. Hence, the solution of the viscous problem is merely 

a linear combination of the two solutions which satisfy 

the DC. 

For large 5 a fundamental set of asymptotic solu- 

tions of equation (25) can be found (see Appendix B.l) 
- - 

-I, -A 
which exhibit the scalar growths 5 2 

5 ? 

5 4 -20 , where hl and h2 are the 

roots of the dispersion relation (13). Due to the dif- 

ferent scalar rates of growth the asymptotic solutions are 

significant in different regions. In particular, due to 

the boundary condition (23) and the rapid growth of 

tion of equation ( 2 5 ) ,  which exhibits this approximate 

scalar growth, is significant only near z = 0 or 

Thus, if E > 0 is small, the two solutions which 

satisfy the DC must combine so as to eliminate approxi- 

mately the rapidly growing solution over most of the 

'n interval 0 < 151 < 1511 and arg 5 = -Z . Except for a 

scaling constant the viscous problem can be approximately 

solved over most of the <-interval by determining a linear 

6 ~ h i s  is discussed more fully in Section 3.2. 



combination of the solutions satisfying the DC, which is 

asymptotic to a linear combination of the solutions exhib- 

-A - A  
1 4 -20 iting the scalar growths 5 , 5 2, and 5 e 

In solving the viscous problem four distinct 

regions develop. Near 5 = 0 the viscous forces dominate 

and the solution decays like ck and (In 5 ) ~ ~  and, hence, 

this region is called the viscous region. For large 5 

the solution of the viscous problem is approximately a 

linear combination of inviscid solutions and, hence, this 

region is called the inviscid region. Connecting the vis- 

cous region and the inviscid region is a transition region 

where 5 varies from large to small values or equiva- 

lently the kinematic viscosity varies from small to large 

values. In addition, near - a boundary layer 
5, - iEa 

develops. The object is to investigate the viscous 

problem in the inviscid region as E + 0 . 
Tihat is required mathematically is a means of con- 

necting the viscous behavior to the inviscid behavior 

through the transition region, or a method to connect the 

expansions about the regular singularity 5 = 0 to the 

asymptotic expansions about the irregular singularity 

5 = . Due to the very complicated three-term recursion 

relation for the expansions about 5 = 0 , it was not 

possible to attack this problem in the same manner in 



which Yanowitch solved the incompressible problem. 

However, it is possible to solve the viscous problem 

numerically (See Section 4) . 

3.2 HEURISTIC DISCUSSION OF THE VISCOUS PROBLEM 

In this section a heuristic discussion of the vis- 

cous problem, formulated in Section 2, is carried out. 

Unless certain pathological situations develop, it is 

shown that it is reasonable to expect existence and 

uniqueness of the solution of the viscous problem for 

every sufficiently small value of E > 0 . For the par- 

ticular values of the parameters used in the calculations 

it appears that none of the pathological situations devel- 

oped. In addition, the four regions (viscous, transition, 

inviscid, and boundary layer) are discussed. 

In Appendix A it is shown that there exist pre- 

cisely two linearly independent solutions of the differen- 

tial equation (25) which satisfy the DC and two linearly 

independent solutions which violate the DC. The two solu- 

tions which satisfy the DC will be denoted by DC (5) and 
-1 

R DC (E). No singularities exist on the ray arg 5 = -- 
-2 2 

for 0 < 151 < a ; hence it is possible to analytically 

continue DC (5) and DC (5) to the whole ray. 
-1 -2 

THEOREM 1: Let the two-dimensional vectors 
1- 

dcl (5) and df2 (5) consist of the first and third 



components of the four-dimensional vectors DC (5)  and 
-1 

1 DC2(5), respectively. If = - - 1 E O  
and (tl) and 

(cl) are linearly independent, then the viscous problem 
has one and only one solution. 

NOTE: It is already known that DC (5) and DC (5) 
-1 -2 

are linearly independent since these solutions of equa- 

tion (25) are linearly independent for small values of 

5 f 0 . For linear differential equations two or more 

solutions are linearly independent on an interval which 

excludes singularities if and only if they are linearly 

independent at a single point in the interval 

[ 8 ,  Chapter 31. 

It is not unreasonable to assume that q ( 5  ) and 
1 

> 
dc2(t1) are linearly independent. See theorems B3 and B4 

in Appendix B.2 for a weaker hypothesis in establishing 

the existence and uniqueness of the solution of the 

viscous problem. 

PROOF: The viscous problem consists of a differen- 

tial equation (25), boundary condition (23), and the DC 

(11). Any solution of equation (25) which satisfies the 

DC (11) must be a linear combination of DC (5) and DC (5) -1 -2 

(see Appendix A). The only question is whether there is 

one and only one linear combination of DC (5) and DC (5) 
-1 ----2 

which satisfies the boundary condition (23) at 5 = El . 
The boundary condition (23) imposes a requirement only on 



the first and third components of DC [El) and DC (gl). 
-1 -2 

-I 

Since ( and dc2 (S1) are linearly independent it is 

clear that there is one and only one solution of 

It is important to note that it is reasonable to 

expect the existence of a unique solution to the viscous 

problem formulated in Section 1 only if there are pre- 

cisely two linearly independent solutions of the differen- 

tial equation (25) which satisfy the DC (11). If only 

one solution of equation (25) satisfied the DC, there 

would be little hope of also satisfying the boundary 

condition (23). If more than two linearly independent 

solutions of (25) satisfied the DC, then there would 

probably be infinitely many solutions to the viscous 

problem. 

Theorem 1 is not very useful for obtaining addi- 

tional qualitative information for 5 large. The region 

151 > 1 is important since it corresponds to the physical 

region 0 5 z < Rn (A) . The most important analysis 

from a physical standpoint concerns the region 15 1 > 1 . 
In order to obtain additional qualitative informa- 

tion for 5 large it is necessary to make use of the 

asymptotic expansions about the irregular singularity 

5 = a . In Appendix B a fundamental set of formal 



asymptotic expansions is developed about the irregular 

singularity 5 = a . The principal results are the fol- 

lowing : 

a. The lead terrns in two of the asynlptotic expansions 

correspond to the t'rvo inviscid solutions, that is, 

two of the asynlptotic expansions are asynlptotic to the 

inviscid solutions. 

b. There are two remaining asymptotic solutions which 

exhibit the scalar growths 54et2' 

The solutions of equation (25) 'rihich are asynlptotic 

to the inviscid solutions will be denoted by - INV1(5) and 

INV2 ( E )  . The solution of equation (25) which is exponen- - 

tially increasing in as 151 increases will be denoted 

by BLSOL(5). The exponentially decreasing solution will 

be denoted by TLSOL (S) . 
If yvp(5) is the solution of the viscous problem 

for some small r > 0 , then y (5) satisfies -v P 

for some constants cl and c2 . Since INV1 (S) , F, (5) , 

TLSOL(<) , and BLSOL (5) grow at different asymptotic rates, 

they are linearly independent for 0 < 151 < and 



arg 6 = -2 
2 ' 

Hence, there exist constants dl, dz, d,, 

and d4 such that 

xv P [<) 
= dl x - INV1(6) + d2 x - INV2 (5) + d3 

x TLSOL(6) + d4 x BLSOL (5) . (27) 

The boundary condition (23) restricts the norm7 of 

yvP(6) near z = 0 as E + 0 , provided it is assumed 

that there exists a unique solution to the viscous problem 

for every E > 0 sufficiently small. This additional 

hypothesis is reasonable since DC (5) and DC2(<) are -1 - 

linearly independent for all 6 such that 0 < (61 < 

Tr and arg 5 = -- (see theorems B3 and B4 in Appendix B, 2 

Section B. 2) . 
If the first and third components of yvp(6) are 

O(1) near z = 0 for each E > 0 sufficiently small, 

then 

since IIEz(El)II = 0 

I The only exception is the resonant Lamb-wave case. 
The details for this case are found in Appendix B, case 4, 
and in Section 5. 



and 

- 1 where El - - i ~ o  and h l  and h 2  are the roots of the 

dispersion relation (see Appendix B) . 
As 151 is decreased (z increased) from the value 

1 1 = , (z = 0 )  , the term d4xBLSOL(<) decreases very 

rapidly since 

Since R e J q >  Re45 if lcl/ > 151 and 

'IT arg < = - -  2 ' thus, the term / I~,XBLSOL(<) / / decreases 

exponentially in J m  as 1 ~ 1  is decreased or equivalently 

as z is increased. The rapid decrease of d,xBLSOL(<) i.s 



even more remarkable when it is related to changes in z . 
If ~ R e E = R e q - R e e ,  then 

and 

Thus, for an increase in z of about the 

1 
term d4xBLSOL(E) is multiplied by a factor of about . 
For small positive E the solution BLSOL(5) is only 

important near the boundary z = 0 , that is, the term 

d4xBLSOL(<) in equation (27) decreases so rapidly that it 

is insignificant and can be neglected outside a thin 

boundary layer. The boundary layer thickness is o(E) 
as E -+ 0 . The solution -- BLSOL(<) is called a boundary 

layer solution. 

Suppose the constants cl and c2 in equa- 

tion (26) are not known, but the vectors DC (5) , DC2 (5) , 
-1 - 

INV, (5) , INV,  (5) , TLSOL (6) , and BLSOL (E) are all deter- - - 
1 mined at 5 = -r . For small positive values of E the 
1 

1 
term d4xBLSOL ( t )  is negligible at 5 = - and, thus, the 

1 

constants cl and c2 in equation (26) satisfy 



+ d3 (31) 

For a value of E like 10 -11 the equation (31) 

is correct to hundreds of significant figures and, hence, 

is certainly consistent with the accuracy of the mathe- 

matical model which has been developed. 

If d l  # C in (31), then tlie viscous problem can 

be solved in two steps. First solve for the constants 

e e e and e4 such that 
1' 2' 3' 

and then solve for the constants d2 and d4 such that 

the vector yvp(E) is given by 

that is, satisfies the boundary condition (23) at 

- or the boundary condition (10) at z = 0 . The 51 - ico 
solution, TLSOL(c), is neglected in equation (33) since it 

8 ~ o r  the earth's atmosphere, E is comparable to 
10-11 [6, Appendix 11. 



decays exponentially fast. For E m 10 -I1 equation (33) 

is correct to hundreds of significant figures. 

Thus, for large 5 the vector y (5) is simply a 
VP 

linear combination of the solutions IW1(<)  and 

which are asymptotic to the solutions of the inviscid dif- 

ferential equation (12). This linear combination of solu- 

tions is modified in a region very close to the boundary 

z = 0 . The region where the inviscid solutions accu- 

rately approximate - INV1(<) and - INV2(<) and the boundary 

layer solution is negligible is the inviscid region men- 

tioned in Section 3.1. 

For values of 5 such that 151 < 1 the solutions 

DC (<)  and DC (5) can be obtained from the expansions -1 -2 

about the regular singularity 5 = 0 (see Appendix A, 

Section A.1). Due to viscosity the solutions decay as 

does 5" , (Ln <)ck as 5 + 0 or e 
-kz -kz and ze as 

z + . The region 0 < 151 < 1 is the viscous region 

since viscous forces dominate and force the decay of the 

solution of the viscous problem. 

Connecting the viscous region to the inviscid 

region is the transition region. In the transition region 

TLSOL(E) will be significant and for this reason it will 

be called the transition layer solution. 



The viscous problem is solved for small E > 0 

when equations (32) and (33) are solved. The equa- 

tion (33) is easily solved since the solutions - INV1(<), 

I N V 2  (S), and BLSOL (6) are easily computed from the asymp- - 

totic expansions (see Appendix B, Section B.l). Ilowever, 

equation (32) must be solved prior to equation (33) since 

the scalar e3 in equation (32) is required in equa- 

tion (33) . Accurate values for. - INV1 (S) , x2 (5) , and 

TLSOL (S) are obtained from the asymptotic expansions (see 

Section B.l) for large 5 . Thus, in order to solve equa- 

tion (32) it is necessary to continue the accurate values 

of the asymptotic expansions to small values of 5 , that 

1 is, to 5 = - . This problem of continuing the accurate 
1 

values of the asymptotic solutions will be called the 

asymptotic continuation problem. It will be investigated 

in Section 4. 



4. INVESTIGATION OF THE ASYMPTOTIC CONTINUATION PROBLEM 

This section was developed as a series of modifica- 

tions of a paper by Conte [ S ] .  A numerical algorithm is 

developed which is specifically aimed at solving the 

asymptotic continuation problem. 

4.1 NUMERICAL ALGORITHM 

A concept which arises frequently in numerical 

analysis is stability. Often a numerical algorithm is 

considered either stable or unstable. However, certain 

problems have "inherent instability", quite independently 

of the particular numerical algoritlln used [9]. Due to 

the different asymptotic growths of solutions of (25), the 

asymptotic continuation problem is inherently unstable. 

Only the solution which grows most rapidly is easily com- 

puted with small relative error. 

It is expected that the relative error for a 

standard numerical integration scheme will grow exponen- 

tially fast for the computation of any subdominant solu- 

tion in the asymptotic continuation problem. IIowever, if 

a certain definition of error (Section 4.2) is introduced, 

then it is found that the relative error grows only alge- 

braically fast. In the remainder of this section a 

numerical algorithm is developed. An analysis of the 

algorithm follows in Section 4.2. 



In Appendix B four distinct formal asymptotic solu- 

tions of (25) about the irregular singularity 5 = w are 

developed. The formal truncated asymptotic expansions are 

denoted b y i  (5) for j = 1,2,3, or 4 and 
j , L  

A 

L = 0,1,2,*ee . It is shown in Section B.2 that y- ( 5 )  
1 , o  

A 

and y (5) are multiples of inviscid solutions. The 
2 . 0  

4 -20 
E, + and 2 (5) exhibits the scalar growth 5 e 

4 , L  

In order to solve the asynlptotic continuation 

problem it is necessary to determine the solutions of (25) 

at 5 = 1 ,' which exhibit the distinct asymptotic 
1 

growths. Thus, it is necessary to determine vectors 

1 yj ( S )  at E, = - such that 
1 

for j = 1,2,3, and 4 . Relation (34) does not uniquely 

specify all of the vectors y.(E,). Since any set of four 
I 

solutions of (25) which satisfy (34) can be used in the 

asymptotic continuation problem, it is natural to consider 

families of solutions of (25) rather than uniquely 

1  he value 5 = was found to be a reasonable value 
L 

at which to determine the asylllptotic connection relations 
for most of the computations. 



defined solutions. The families are chosen so that each 

member has the same asymptotic expansion on the ray 10 

'TI' arg 5  = -- 2 ' 
The family of solutions of the differential 

equation ( 2 5 )  which are asymptotic to (5)  , is denoted 
-j 

by {yj  (511 .  

THEORE11 2: If yj ( 5 )  is a member of { y .  (5 )  } for 
I 

j = 1,2,3, and 4 , respectively, then Y. (5 )  is also a 
-7 

member of { y ,  ( 5 )  1 if 
7 

and 

where c, d, cl, c2, and c4 are arbitrary complex 

scalars. 

PROOF: The vectors y (5) and y2 ( 6 )  exponentially 
-1 

dominate y ( 5 )  as 5  -+ . Hence, any multiple of y4(<)  
-4 

can be added to y (5)  or y2(<)  without altering the 
-1 

asymptotic properties of y1 ( 5 )  or x2 ( 5 ) .  

 he families are easily extended to the sector 
jarg 5 1 < IT . However, this extension is unnecessary for 
the immediate problem of interest. 



S i m i l a r l y ,  x3 (5) e x p o n e n t i a l l y  dominates  (5)  , 

ys (5) , and (5)  a s  5  -+ . Hence, a r b i t r a r y  m u l t i p l e s  

of ~ ~ ( 5 )  y 2 ( 5 )  9 and ~ ~ ( 5 )  can  be added t o  y 3 ( 5 )  w i t h o u t  

a l t e r i n g  t h e  a s y m p t o t i c  p r o p e r t i e s  of ~ ~ ( 5 ) .  Q . E . D .  

THEOREM 3 :  I f  yj  (5) and Y . (5) a r e  members of 
-3 

{ y .  ( 5 ) )  f o r  j = 1 , 2 , 3 ,  and 4 , r e s p e c t i v e l y ,  t h e n  
-3 

and 

f o r  some j c a l a r s  c ,  d ,  c l ,  c 2 ,  and c 4  . 

PROOF : The v e c t o r s  y1 (5) , y2 (5)  , x3 ( 5 ) '  and 

y 4 ( < )  a r e  l i n e a r l y  independen t  s i n c e  t h e y  have d i f f e r e n t  

a s y m p t o t i c  g rowths .  Hence, any s o l u t i o n  y ( 5 )  - of  t h e  d i f -  

f e r e n t i a l  e q u a t i o n  ( 2 5 )  can  be  r e p r e s e n t e d  i n  t h e  form 

I n  p a r t i c u l a r ,  t h e r e  e x i s t  c o n s t a n t s  c  s u c h  
jk 

t h a t  



However, 

and 

Thus 

for j = 1,2,3 and 4 , where L is an arbitrarily large 

integer. The theorem is an immediate consequence of rela- 

tions (37) and (38). Q . E . D .  

Suppose a numerical integration of the differential 

equation (25) in the direction of decreasing 151 along the 

ray arg < = -$ is performed. The solution y4 (5)  

increases exponentially fast (in dm), ~ ~ ( 5 )  and y2(c) - 



e x h i b i t  a l g e b r a i c  g rowth ,  and y [S) d e c r e a s e s  exponen-  
3 

t i a l l y  f a s t  ( i n  dm) a s  ( 5  1 d e c r e a s e s .  IIence, i t  a p p e a r s  

t h a t  f o r  a  n u m e r i c a l  i n t e g r a t i o n  i n  t h e  d i r e c t i o n  of 

d e c r e a s i n g  / 5 1 t h a t  t h e  t r a n s i t i o n  l a y e r  s o l u t i o n  (y4 ( 5 ) )  

i s  e x p o n e n t i a l l y  dominan t .  There  s h o u l d  be  l i t t l e  d i f f i -  

c u l t y  i n  o b t a i n i n g  a n  a c c u r a t e  v a l u e  of t h e  t r a n s i t i o n  

1 l a y e r  s o l u t i o n  a t ,  s a y ,  5 = T- . However, i t  i s  a n t i c i -  
1 

p a t e d  t h a t  t h e  r ema in ing  s o l u t i o n s  w i l l  be more d i f f i c u l t  

t o  d e t e r m i n e  a c c u r a t e l y .  

I f  t h e  i n i t i a l  v e c t o r s  f o r  a  n u m e r i c a l  i n t e g r a t i o n  

of  t h e  d i f f e r e n t i a l  e q u a t i o n  (25) a r e  d e t e r m i n e d  from t h e  

t r u n c a t e d  a syn lp to t i c  expans ions  $ (C) ,  f o r  
-j , L  

j = 1 , 2 , 3 ,  and 4 , t h e n  an i n i t i a l  r e l a t i v e  e r r o r  

t o  approach  z e r o  a l g e b r a i c a l l y  f a s t  a s  t h e  i n i t i a l  

5  -+ . Due t o  t h e  i n h e r e n t  i n s t a b i l i t y  o f  t h e  c o n t i n u a -  

t i o n  p rob lem,  an i n i t i a l l y  s m a l l  e r r o r  i s  e x p e c t e d  t o  be 

m a g n i f i e d .  The i n i t i a l  e r r o r  may grow e x p o n e n t i a l l y  f a s t .  

t lence, it nlay happen t h a t  a  s imple  n u m e r i c a l  i n t e g r a t i o n  

1 t o  5 = - w i l l  y i e l d  no s i g n i f i c a n t  f i g u r e s  i n  t h e  
1 

d e t e r m i n a t i o n  o f  y . ( E ) ,  even though subsequen t  e r r o r s  due 
7 

t o  n u m e r i c a l  i n t e g r a t i o n  can  be made a r b i t r a r i l y  s m a l l  by 

c a r r y i n g  s u f f i c i e n t  p r e c i s i o n  i n  t h e  c a l c u l a t i o n s .  



In order to solve the asymptotic continuation 

problem, it is necessary only to obtain an accurate member 

in each of the families {y. (S)), for j = 1,2,3, and 4 . 
-3 

An accurate determination of a member {y3 (5) 1 will serve 

as an error check. Thus, an attempt will be made to 

determine a member of {y3 (5)  I, although it is not required 

for the solution of equation (32). 

One additional requirement must be imposed. Linear 

independence of the particular members of the families 

{yj(5)} - must be required. It will be shown in the next 

section that it is possible to obtain accurate members of 

the individual families which are essentially linearly 

dependent (ill-conditioned) if only finitely many signifi- 

cant figures are retained. In order to ensure linear 

independence of the particular members of the different 

families a canonical form will be introduced. To some 

extent the canonical form is arbitrary. The two main 

properties of the canonical form are that it 

a. Ensures linear independence. 

b. Singles out unique members in each family of 

solutions. 



In addition, as a bonus the canonical form provides an 

effective error control which overcomes the inherent 

instability of the continuation problem in many cases. 

The transition layer solution (z4 ( 5 ) )  is uniquely 

defined and, thus, for any value of E, it is possible to 

determine which component is greatest in modulus. This 

component will be called the maximum component of y4(€,). 

If more than one component achieves the maximum, then the 

component with the lowest index is called the maximum com- 

ponent. Thus, for a specified value of 5 there will 

correspond a unique maximum component of y 4 ( < ) .  

If yl(€,) is a member of {yl(c) I ,  then consider 

Due to theorem 2 ,  Y (5)  is also a member of {yl (5 )  I .  The 
-1 

vector Y (5 )  is said to be in canonical form at E 0  if 
-1 

xl(E0) has a zero component corresponding to the maximum 

component of y4 ( c O ) .  A member of {y (5)  I ,  which is in 
-1 

canonical form at E 0  , is denoted by y1 (5 ; t o )  . Simi- 

larly, a canonical form for the family Iy2(€,)1 is intro- 

duced. 

The vector y2(<;E0) is a solution of (25), such 

that y 2 ( ~ o ; ~ o )  is in canonical form, that is, y2(<0;50)  



has a zero component corresponding to the maximum com- 

ponent of x4 (to). 
THEOREM 4: For each value of to such that 

7r 0 < 1501 < m and arg E0 = -Z , the canonical vector, 

Y.(<;<~), defines a unique member of Cy.(<)} for 
3 I 

PROOF: Existence of at least one solution, 

y j  (6; go), is assured since any member of {y . (5) 1 
-3 

(j = 1 or 2) can be reduced to canonical form at any to 
- '7T on the ray arg E0 - -- 2 a 

Each member of Cy . (5) 1 can be 
-7 

'I7 analytically continued to the entire ray, arg < = -- 2 and 

0 < 151 < , since there are no singularities of the 

differential equation (25) on this ray. 

All that remains is to show that any two members of 

{Y.(<)} (j = 1 or 2), which are simultaneously in canon- 
-3 

ical form at E0 , must be identically equal. 

Suppose y .  (<;5 ) and Y. (<;S ) are two members of 
3 -3 

{y.(<)}, which are in canonical form at < = go . The 
-3 

vector y j  (<;<o) - Y j  (<;to) is equal to a multiple of x4 (5) 
due to theorem 3. Thus, 

The constant c in (40) must be zero since 

y.(~o;Eo)-Y.(~O;EO) has a zero component corresponding to 
3 -3 



the maximum component of -&E) at 5 = to . Hence, 

Q . E . D .  

The canonical form of a particular member of 

{yj(5)} at 5 = to (j = 1 or 2 )  can be considered the 

canonical form of the family of solutions at 5 = , 

since any two members of {y.(<)) yield the same canonical 
--I 

vector at 5 = E0 . Hence, the canonical form is a 

property of the family and not merely a property of the 

particular member which is reduced to canonical form. 

The vectors yl(<;<o) and y (<;cO) are uniquely 
-2 

defined members of {yl(5) 1 and {y2 (5)) , respectively. For 

every it is possible to determine which component of 

y1(50;<0) is greatest in modulus. This component will be 

called the maximum component of y (50;50), If more than 
-1 

one component achieves the maximum, then the component 

with lowest index is called the maximum component. 

Consider 

The vector yT(<;<o) is said to be in temporary 

canonical forml1 at 5 = e0 if c is chosen so that 

 or computational purposes the vector -y, (5,; 5,) 
will be used and then discarded. It is in this sense that 
the vector yT(5,;5,) - is of temporary value. 



(to;< ) has a zero component corresponding to the 
T 0 

maximum component of y1 (5 ; < ) . Since y (5 ;to) and 0 0 -1 

Y~(<;<~) are unique linearly independent solutions of 

(25), the vector ~ ~ ( t ; ~ ; < ~ )  is uniquely defined and nonzero 

'rr for each such that 0 < 16 / < and arg to = -- 2 a 

The vector Y ~ ( < ~ ; < ~ )  has a component which is greatest in 

modulus. The first component to achieve the maximum is 

called the maximum component. 

Now it is possible to introduce a canonical form 

for {y3(<)1, the boundary layer family of solutions. Sup- 

pose y3(<) is a particular member of {y (<) 1 and consider 
-3 

where a, b, and c are scalars which are chosen such that 

y (<O;<O) has three components which are zero. The three 
-3 

zero components correspond to the distinct maximum com- 

ponents of y4(So) xl(SO;<O) and &-,(<O;<O) a The scalars 

a, b, and c can be determined in essentially a back 

substitution process by first solving for c , then a , 
and finally b . 

THEOREM 5: For each value of E0 such that 

TT 0 < < and arg E0 = -- 2 ' the canonical form (42) 

defines a unique member, r, (<;cO) of Iy3 ( 5 )  1. 



PROOF: Any member of {y3 (5)) can be reduced t.o 

'rr canonical form (42) for any 5, such that arg 5, = -- 2 

and 0 < ]€,,I < . The only question is whether or not 

y3 (5 ; co) is uniquely defined. 

Let y3 (<;E,O) and Y3 (5;5,) be any two vectors which 

are both members of {y3(<)l and in canonical form at 

5 = c0 . From theorem 3 

where cl, c2, and c4 are uniquely determined, or 

where a and b in (44) are uniquely determined from 

c 1 and c2 in (43). But Y3(S0;S0) and ~ ~ ( < ~ ; 5 , )  have 

zero components corresponding to the maximum components of 

z4(So)> Ll(So;50), and xT(50;So). Thus, the constants 

a, b, and c4 in (44) are all zero and this implies 

Y3(S,;5,) - z3(5,;5,) = - 0 . 

Thus, 



In order to solve the asymptotic continuation 

problem it is necessary to determine members of the fami- 

1 lies {yj(5)} for j = l,2,3, and 4 at 5 = - .  Due to 
1 

theorems 2 and 3 it is permissible to use the canonical 

1 vectors y. (C0;E0) at = to solve equation (32). 
3 

The asymptotic continuation problem is inherently 

unstable. However, theorems 2 and 3 imply that the solu- 

tions of the differential equation (25), which exponen- 

tially dominate y .  (6) for decreasing 5 , do not destroy 
-3 

the calculations. For example, consider y ( E ) ,  for 
-1 

decreasing 151 the only solution which exponentially domi- 

nates 4(5), is r4 (5). If an error is initiated at some 

50 , which introduces a small multiple of y (S), then as 
-4 

15 1 is decreased the growth of y4[5) may swamp the calcu- 

lation. However, theorems 2 and 3 imply that arbitrary 

multiples of x4 (5) are acceptable, that is, do not affect 
the asymptotic continuation problem. The only difficulty 

which y (5) creates in the computation of y (5) is that 
-4 -1 

the multiple of y (S), introduced via an error, may grow 
-4 

to such proportions that y (5) is masked by the multiple 
-1 

of y4(5), that is, several of the significant figures of 

the numerical approximation of ~ ~ ( 5 )  may reflect the use- 

less multiple of y (<) ,  which was introduced via an error. 
-4 

In order to avoid this situation it is necessary to 



control (not eliminate) the multiple of &(<) present in 

the numerical approximation of ~ ~ ( 5 ) .  This can be effec- 

tively accomplished by reducing the numerical approxima- 

tion of y (5) to canonical form several times over the 
1 

interval of numerical integration. 

There are essentially five steps in solving the 

continuation problem. They are the following: 

a. Initial vectors are determined from the trun- 

cated asymptotic expansions (6) at an 
-j , L  

appropriate initial value of 5 = SI (see 

Appendix B, Section B. 2) . 

2 b. The interval from <I to 5 = I is divided 
1 

into N subintervals. l2 If the variable T 

is defined by T = a , then the N subin- 

tervals are chosen to have equal length in T . 
The integer N is chosen sufficiently large so 

that the transition layer solution does not 

grow in norm by more than a factor of 10. 

1 2 ~ o r  the case k = 0.005 , the gravity wave and 
Lamb-wave numerical integrations were terminated at 
5 = -2 x 104i . The DC solutions were continued from 

1 4 5 = - to 5 = -2 x 10 i in order to determine the asymp- 
1 

totic connection relations. 



c. A numerical integrationL' is performed over the 

first subinterval starting at 5 = SI with the 

initial vector y (SI) for j = 1,2,3, and 4 . 
j , L  

At the end of the subinterval the numerical 

solutions are reduced to the appropriate canon- 

ical form. Step c is repeated for each succes- 

sive subinterval. The canonical vectors 

obtained at the end of the kth subinterval are 

the initial vectors for the k+lst subinterval. 

2 d. A numerical integration14 from 5 = - to 
1 

1 5 = - is performed. The numerical solutions 
1 

of (25) are once again reduced to canonical 

form. 

e. The boundary layer solution Cy3[5)) - obtained 

1 at 5 = - is numerically integrated from 
1 

1 5 = - to 5 = <I . The vector so obtained at 
1 

5, is reduced to the boundary layer canonical 

form, x3 (51;51), by adding the proper 

l 3 ~ h e  numerical step in 5 , which is used in the 
numerical integration, is uniform in c; that is, if H 
is the uniform step in c and h the step in 5 , then 
h = ( c + H ) 2 - 5 = 2 e H + ~ 2 .  

1 4 ~ h e  numerical step in 5 which is used for this 
portion of the numerical integration is uniform in 5 , 



multiples of the vectors 2 (E1) for 
j , L  

j = 1,2, and 4 . The canonical form of the 
A 

vector y (5,) is then compared with the 
-3 , L 

canonical form of the vector which has been 

1 integrated from 5 = - to 5 = SI . The 
1 

agreement, or lack of agreement, between these 

two vectors is a good error indication. In 
2 

addition, the approximation of y3(c1;;) was 
A 

2 

compared with y (5,). 
3 I L  

Since the numerical solutions, which approximate 

yl (5) , y2 (5). and y4(5) , must be accurate in order to 

reduce y3(5) accurately to canonical form, it follows that 

step e is an error check on all of the solutions. Since 

y3 (5) dominates x1 (5) , y2 (5) , and y4 (5) for increasing 

151, there should be little difficulty in numerically con- 

1 tinuing y (5) from 5 = ?- to 5 = 5 
-3 1 I ' 

Thus, the error 

check at 5 = C1 is a good indication of the errors 

1 present at 5 = - . For several problems where a closed- i 

form solution was available, the algorithm (steps a through 

e) yielded accurate canonical vectors for small values of 

the independent variable. In addition, step e provided a 

one-significant-figure estimate of the maximum relative 

error present in the canonical vectors. This partially 



justifies the claim that step e is an error check for all 

the numerical solutions. 

4.2 NUMERICAL ANALYSIS 

In this section the algorithm developed in Sec- 

tion 4.1 is investigated. The approlimate numerical value 

of y . (5)  , so obtained at a fixed value15 of 5 , is shown 
-3 

to approach a vector associated with a member of {y. (5) I .  
3 

It will be tacitly assumed that it is possible to compute 

numerical solutions of the differenti.11 equation (25) 

which are arbitrarily close to actual. solutions of (25). 

The continuation problem, thus limitec , is simply a ques- 

tion of whether the truncated asymptotic expansions, 
A 

yj  , L  
(5,), yield sufficient accuracy tc, determine the vec- 

1 tors y .  (5) at 5 = in the limit as < I - + m .  Since the 
-3 

initial error in 2 (C1) decreases alrebraically fast as 
j ,L 

51 -+ and the solutions of the diffe -ential equation (25) 

grow at different exponential rates, i .  is not obvious 

that the continuation problem can be s lved in this manner. 

Of course, the more difficult p oblem of accumu- 

lated error due to numerical integratiin cannot be 

entirely ignored. The fifth step of t i e  numerical 

-. 

l 5 ~ o r  convenience the fixed value ,f 5 is chosen to 
1 be 5 = r .  



algorithm, developed in Section 4.1, provides a reason- 

able check of the accumulated errors. 

Consider 

where y (5) is a solution of the differential equa- 
j e 

tion (25) for all 5  . It will be assumed in all that 

'n follows that arg 5  = -- 2 a 

For an arbitrary go in equation ( 4 5 )  the vector 

y j e ( 5 )  will not necessarily be a member of { y . ( < ) }  even 
-3 

though y .  (5) is a member of {y. (5) 1 .  It is necessary for 
-3 3 

the analysis to quantify or measure in some way the dis- 

parity (error) of y (5) with members of {y .  (5)  1 .  Of 
j e  I 

course, it is possible to call I ( &  I I the error in y (5)  
-0 -j e 

at 5  = E 0  . l6 However, this concept of error does not 

lead to a unique value17 since there are infinitely many 

members in the families { y . ( E ) ) ,  for j = 1,2, and 3 . 
3 

THEOREM 6 : If 

E ( 5 ; t 0 )  = min 
j e 

l l y j e ( 5 )  - Y . ( ~ ) I I  9 

y .  ( E l  E { Y .  ( 5 )  1  -3 
-3 -7 

5  fixed 

1 6 ~ h e  maximum norm is used throughout this paper. 

171f j = 4 then / I E  I / uniquely defines the error 
-0 at 5  = t o  . 



where y (5) and E0 are defined in equation (45), then 
j e 

the function E (5;t0) exists, is continuous in 5 , and 
j  e 

nonnegative for 0 < 1 1 < a . 
PROOF: If j = 4 , then theorem 6 is trivial 

since {y (5)) has only one member, y4 (5). Therefore, the 
-4 

limit process, implicit in the definition of E,e(5;So), 

is trivial. Continuity of E4e(5;<0) follows since y (5) 
-4 e 

and y (5) are continuous in 5 . 
4 

In order to show that E (<;to) exists for 
j e 

j = 1 , 2 ,  and 3 , it is necessary to show that there 

exists a member, xj (5) of {yj (5) 1, corresponding to each 
value of 5 such that 1 l y e  (5) y . (5) 1 1 achieves a minimum. 

-7 

Let S.(<) be a set of nonnegative numbers corres- 
3 

ponding to each value of 5 . A number s is included in 

S. (5) if and only if 
7 

for some Y .  (5)&{y. (5) 1. Thus, Sj (5) is defined for all 5 
-7 -3 

such that 0 < 15 1 < since y (5) and {yj (5)) exist for 
j e 

0 < 1 ~ 1  < . In addition, S.(<) is bounded below by zero 
7 

for each value of 5 . Hence, S.(<) has a greatest lower 
1 

bound (g.1.b.) for each value of 5 . The function 

E (<;to) exists if the g.1.b. is achieved for a member of 
j e 

{zj (5 )  1 



Let 

The function E (5;G0) exists if s. (5)~s. (S). Since 5. (5) 
j e I I I 

is the g.1.b. of S.(C), there exists a sequence of func- 
3 

tions y- (5) such that for a prescribed 5 y . [ S )  r{y . (5) 1 
j n -I n -I 

1 im for n = 1,2,3,-- and n+m l  1 ~ .  (5)  - xjn 
3 e  

(5) 1 I = s j (5) . 

The sequence y (5)  must remain bounded for fixed 
j n 

5 , since for arbitrary E > 0 prescribed 

< s.(S) + E I I Y .  5 - Y j n  I I - for n sufficiently 
3 e  

large. Hence, //yjn(S)II 5 llyj,(5)11 + ~ ~ ( 5 )  + . Due 

to theorems 2 and 3 the vector y (5) can be expressed in 
j n 

the form 

where y. (6) and y (5) are particular members of {y. (5)) 
-3 k -3 

and {yk(<) 1, respectively; that is, y .  (5) and y (6) do not 
-3 -k 

vary with the subscript n . 
NOTE: If j = 1 or 2 in equation (46), then the 

sum over k includes k = 4 only; that is, 

c = c  = c = 0 . If j = 3 in equation (46), then In 2n 3n 

the sum over k includes k = 1,2, and 4 . If j = 4 in 

equation (46), then cln - - = C  - '2n - '4n = o .  
3n 



The scalars ckn in equation (46) are uniformly 

bounded in n since the vectors y (<) are uniformly 
j n 

bounded in n and y1 (1.1, x2 (51, y3 (5) ? and y4 (5) are 

linearly independent. Hence, there exists a convergent 

subsequence of the scalars ckn , call it ckn , Thus, 
R 

Yk n is a convergent sequence of vectors and this 
R 

sequence converges to a vector which is a member of 

{yj (6) I. Denote the limit vector by y (5) , then 
j 0 

y e <  - yjo(<)II = sj(5) ; thus? E (<;to) exists and 
j e 

is clearly nonnegative. 

Clearly, I Iyj  (5) I / is continuous in < for a par- 

ticular member of {y.(<)I since y.(~) is continuous. 
-7 -7 

Suppose at 5 = SL , yjl(<) is selected so that 

E j e (E;EO) = I lyje(S1) - yjl(El) I I and y (E)E{Y~ (S)}. 
jl 

The vector y (5) exists due to the analysis which estab- 
-j 1 

lished the existence of E (5;t0) for 0 < 15 1 < . 
j e 

For any c2 

since y (t2) is not necessarily a vector which minimizes -j 1 

1 y j e  - , (5) 1 1 . Consider an arbitrary sequence v n 

of < values such that v -+ 5 as n -+ . The cor - n 

responding sequence of nonnegative numbers E 
j e 

(vn;5,) is 

bounded due to ( 4 7 ) ,  and hence, there exists a convergent 



subsequence E je(~n ; E o )  Inequality (47) implies 
k 

lirn E 
n k im je(~n~;'O) Eje(S1;So) . 

Relation (48) follows if E2 = v n in (47) . 
k 

If only equality in (48) can hold, then theorem 6 

is established since the implication is that every conver- 

gent subsequence E je(vnk;<O) converges to the same limit, 

E (51;50). Thus, it ~iould follow that 
j e 

lirn 
(52;50) = Eje(S1;SO) 5,+S, je 

or E (<;to) is continuous in the variable 5 . 
j e 

Suppose 

lirn 
n k +mEje(~nk;cO) < Eje(S1;S0) 

and let 

lirn 
E = Eje(E1;tO) - +Eje(vnk0) 

k 

Now consider the sequence of vectors y  (5) such that 
-j n 

k 

and y ~ { y .  (5) 1 .  There exists such vectors zjn (5) due t o  
jnk -I k 

the analysis which establish the existence of E (5;E0) 
j e 



If the differential equation (25) is written in the 

form 

and IIA(6)II = SU IIA(<>xII 2 

I lxlP=l 
5 f i x e d  

then it is readily seen that I IA(s)I I is bounded on 

0 < 6 15 1 < m (recall arg 5 = -$). Relations (50) and 

(51) imply 

where y(5) is a solution of (50). An immediate conse- 

quence of (52) is 

Thus, 



However, as n -+ k 

is bounded. Thus, for sufficiently large nk 

However, (53) contradicts the definition of 

Eje(<;C0). Since (53) follows from relation (49), it fol- 

lows that (49) is false. Hence, only equality can hold in 

(48). Therefore, E (<;go) is continuous in < . Q.E.D. 
j e 

DEFINITION 1: The function E (<;to) is called the 
j e 

absolute error of y (<) with respect to the family 
j e 

It is often more useful to deal with relative 

errors rather than absolute errors. This is generally 

true when the solutions being investigated are capable of 

growing or decaying exponentially fast. Before a useful 

definition of relative error is developed, some prelimi- 

nary analysis will be performed. 

LEMMA 1: If fj1(5) = minl /yjl(<) I I , subject to 

the constraints 



b .  5  f i x e d ,  and 

t hen  t h e  f u n c t i o n  f  (5) e x i s t s  f o r  0 < 151 < . I f  
j 1 

f (5)  = min 1 l L j 2  (5) 1 1 s u b j e c t  t o  t h e  c o n s t r a i n t s  
j 2 

b .  5  f i x e d ,  

t hen  t h e  f u n c t i o n  f  (5) e x i s t s  and i s  con t inuous  i n  5 
j 2  

f o r  0 < 151 < . 
PROOF: Due t o  theorem 6 ,  t h e r e  i s  a t  l e a s t  one 

v e c t o r ,  y .  ( < ) ~ { y .  ( 6 )  1 ,  cor responding  t o  each  5  such 
I 1 I 

t h a t  

If t h e r e  a r e  on ly  f i n i t e l y  many such v e c t o r s ,  t hen  

f j l ( < )  i s  t r i v i a l l y  c o n s t r u c t e d .  I f  i n f i n i t e l y  many v e c -  

t o r s  y (5) s a t i s f y  ( 5 4 ) ,  t h en  t h e  a n a l y s i s  i n  t h e  proof  
j 1 

o f  theorem 6 can be r e p e a t e d  t o  e s t a b l i s h  t h a t  f (5)  
j 1 

e x i s t s .  S i m i l a r l y ,  f j 2 ( < )  e x i s t s .  I n  a d d i t i o n ,  t h e  

a n a l y s i s  i n  t h e  proof of theorem 6 can be r e p e a t e d  t o  

e s t a b l i s h  t h e  c o n t i n u i t y  of  f  ( 5 ) .  
j 2 



Now r e t u r n  t o  t h e  development  of a  d e f i n i t i o n  of  

r e l a t i v e  e r r o r .  I n  g e n e r a l ,  r e l a t i v e  e r r o r  i s  d e f i n e d  by 

a  r a t i o  of t h e  form 

The absolute error  I / Y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  - zEXACT 1 I i s  d e f i n e d  i n  

d e f i n i t i o n  1. The problem i s  how t o  choose  I I X E X A C T  I I 
from t h e  f a m i l y  {x~,,,,}. The f o l l o w i n g  trio d e f i n i t i o n s  

a r e  p o s s i b l e  ways of d e f i n i n g  a  un ique  r e l a t i v e  e r r o r .  To 

d i s t i n g u i s h  t h e s e  two c o n c e p t s  one w i l l  be c a l l e d  t h e  r e l a -  

t i v e  a c c u r a c y  and t h e  o t h e r  w i l l  be c a l l e d  t h e  r e l a t i v e  

e r r o r .  

DEFINITION 2 :  The r e l a t i v e  a c c u r a c y  of  v j e ( 5 )  w i t h  

r e s p e c t  t o  t h e  f a m i l y  i y  (5) 1 i s  d e n o t e d  by i2 (5 ; CO) and 
I j e 

i s  d e f i n e d  by 

E ( < ; t o )  
A (5 ;S0)  = 

j e 
j e  

> (55) 
f (5)  

1 1 

where y (6) i s  d e f i n e d  i n  ( 4 5 ) ,  E ( 5 ; e 0 )  i s  d e f i n e d  i n  
j e j e 

theorem 6 and f  (5) i s  d e f i n e d  i n  lemma 1.. 
j l  

DEFINITION 3: The r e l a t i v e  e r r o r  of y ( E ) ,  w i t h  
-j e 

r e s p e c t  t o  t h e  f a m i l y  i y  . (5) I ,  i s  deno ted  by R (5 ; c O )  and 
-3 j e 

i s  d e f i n e d  by 





The relative accuracy Ale(50;50) is roughly a measure of 

the number of significant figures of agreement between 

y (EO) and some member of 1~1(<)1 at to . On the other -1 e 

hand, the relative error Rle(5;So) is not influenced by 

the apparent agreement between Y~,(<~) and some member of 

{yl (5) 1 .  The relative accuracy of 4, (5) can be made 

arbitrarily small at any fixed finite value of 5 by 

simply adding a sufficiently large multiple of y4(5) to 

y l  The absolute error Ele (<;SO) is not necessarily 

small if A (5 ;to) is small. However, Rle (6 ;SO) can only 
1.e 

be made small at a fixed finite value of 5 by making 

Ele(5;Co) small. The asymptotic continuation problem will 

be considered solved if the relative error R (<;cO) can 
j e 

1 be made t approach zero at 5 = - 1 , for j = 1,2,3, 

and 4 . 
Suppose x. (5) are particular members of iyj (5) I ,  

3 

respectively, for j = 1,2,3, and 4 ; then the vector 

error, go in (45) , can be expressed in the form 

where the scalars are uniquely determined. 





arbitrarily small but positive. The constants M1, N2, 
M3 

and M4 are finite and independent of to . The functions 

f (5) are defined in lemma 1. 
j 2 

PROOF: The proof of this theorem involves a good 

deal of heavy analysis. For this reason the main elements 

in the proof of theorem 7 will be outlined first. 

By far the most important element in establishing 

theorem 7 is the definition of the absolute error 

E .  (<;to). The definition of E (<;to) implies 
~e j e 

and 

E4e(t;t0) S L )  + b21 IlL2(t)II 

+ lc31 I l 3  I + lc41 I I ~ ~ t t ) l  I 

Theorem 7 relates the error at 5 to the initial 

error at E0 and this is where the heavy analysis arises. 

If 1501 were bounded above by some finite constant, then 



the theorem would follow trivially since the solutions 

y.(<) have only a bounded growth on a bounded interval 
-3 

which excludes 5 = 0 . However, can be chosen arbi- 

trarily large in theorem 7. 

For particular vectors yj (<)~{y~ (<) 1 it is possible 

to consider two cases: 

The first case is easily handled for any value of 

M < . The second case can be handled by the asymptotic 

expansions if M is sufficiently large. 

LEI~MA 2. If xj(5)~iy.(<)1 for j = 1,2,3, and 4 
-3 

and the roots, h l  and X2 , of the dispersion relation 

(13) are distinct, then 

for j = 1,2, and 4 and 1 I 151 < and 

for 



PROOF: S ince  x. (5)  and f  (5) a r e  con t inuous  f o r  
3 j 2  

1 5 151 < and f i 2 ( < )  > 0 i t  fo l lows  t h a t  - 
I I Y . ( ~ )  -7 I I 

5 )  
i s  un i fo rmly  bounded f o r  j = 1 , 2 , 3 ,  and 4 and 

f j 2 ( .  
1 I 151 5 Mo < (Mo h e l d  f i x e d ) .  Thus, i t  i s  on ly  nec -  

e s s a r y  t o  examine I l y  . (6) 1 1 I f .  (5) f o r  5 l a r g e .  But f o r  
-7 3 2  

5  l a r g e  ( s ee  Appendix B.2) 

where b b  c and c a r e  l i n e a r l y  indepen-  
-0,l' -0,2'  -0,3'  -1,3 

d e n t .  

I t  w i l l  be conven ien t  f o r  t h e  a n a l y s i s  t o  c o n s i d e r  

t h e  fo l l o wing  v e c t o r s  



and 

Due to the relations (61), (62), and (63) it follows 

that 

and Y4(5) + -C as 5 - f ~ .  
- 0 , 3  

Therefore, V (E), x2(S), V_3(5), and s(5) are uniformly 
-1 

bounded and linearly independent for 1 5 151 < . 
CASE 1: 

since {r4(5)1 consists of a single unique member ~ ~ ( 5 ) .  

CASE 2 : Consider 1 ) 1 1 f (5) . Lemma 1, which 

established the existence of f12(5), implies the existence 

of a function cmin (6) , such that 

Clearly, 



It is necessary only to show that I I V  -1 (5)+cmin(5)V,(5) I I 
is uniformly bounded away from zero since I I V  (<)I / is -1 

uniformly bounded. The first step is to show that cmin(<) 

is uniformly bounded. Consider 

and I IV1 (5) ' 'min (5)v -4 (5) I I 5 I I I 

Thus , 

but / (V 15) I I and I I~_q(c) ( I are unifornrly bounded, con- 
-1 

tinuous, and for all finite 5 f 0 , 1 ( 1  > 0 . As 

< + - a  , l 4  1 I + I 15131 1 and hence, I I v _ ~ ( ~ ) I  I is 

uniformly bounded away from zero. Thus, cmin(S) is uni- 

formly bounded. 

There exists a constant, cm , such that 

I lboIl - c ~ c ~ , ~ ~  I = minimum > o ( 6 4 )  

since b and c are linearly independent vectors. -0,l -0 ,3 

Now consider I I V  (5) +cmin -1 (SIX4 (5) I I for large 5 , 



+ (LO , x - c min t < ) c o 1 3 )  l I 
(6  5 

Relation (65)  implies 

The first term on the right side of (66)  is bounded 

away from zero as 5 -+ due to ( 6 4 ) '  and the remaining 

two terms tend to zero as 5 -+ since -+ b - 0 , l  ' 

X4(S)  -+ -C - 0 , 3  ' and I c r n i n ( < ) I  is uniformly bounded. 

Hence, relation ( 6 6 )  implies I I V  ( t ) + c  (5)Y4 (6 )  / / is -1 m i n  

uniformly bounded away from zero, for sufficiently large 

5 and it is already known to be uniformly bounded away 

from zero for 1 I 15 1 5 241 (Mo arbitrarily large). 0  

CASE 3 : Consider 1 1 y, (5)  I 1 /f ,, (5)  . Replace sub- 

script 1 with 2 in case 2. No new analysis is required. 



CASE 4: Consider 11y3(<)11/f32(5). Lemma 1 

implies that there exist functions, clmin(t), cZmin ( 6 )  and 

C 4min (<), such that 

Thus, 

I Iy3(t) I I 

It is necessary only to show that 

I lX3 (S)+clmin (SIX1 (S)+czmin (t)X2(S)+c4min(t)~4 (51 I I 
is uniformly bounded away from zero on 1 I 151 < since 

1 

$1 1 (5) 1 1 is uniformly bounded. in addition, 

it is necessary to consider only large 5 since the lemma 

is valid for 1 5 16 1 5 M o  trivially. 

The first step in establishing that 

I I!3 (5) +clmin (t)xl (t) + a I I is uniformly bounded away from 



zero is to establish that clmin(<), clmin (5) , and Cqmin (< 1 

are uniformly bounded functions. Clearly 

and 

I 1 'lmin (s)v_~(s) + cZmin (5)L2(5) + C4min (5)x4(5) 1 1 

- 1 1 )  1 1 5 1 is(<) + clmin (E.)V,(S) + * * * I I  • 

Therefore, 

and I Iy3(<)I / is uniformly bounded on 1 < 151 < . This 

implies that the functions cjmin (5) (j = 1,2,4) are uni- 

formly bounded. If the functions cjmin (5) were not uni- 

formly bounded, then there would exist a sequence 5 -+ w 
n 

as n + such that 

1 jmin (5,) I -+ 2 (69) 

for some j = 1,2, or 4 . 
NOTE: c (5) cannot become unbounded for finite jmin 

5 since y1 (<) , x2 ( 5 ) '  and V (5) are linearly independent 
-4 



f o r  a l l  f i n i t e  6 . Hence, r e l a t i o n  (68) i m p l i e s  t h a t  

C 
j m i n  

(5) a r e  bounded f o r  a l l  f i n i t e  5 . 
I f  more t h a n  one s u b s c r i p t  j s a t i s f i e s  ( 6 9 ) ,  t h e n  

c o n s i d e r  t h e  s u b s c r i p t  j f o r  which 

f o r  i n f i n i t e l y  many s u b s c r i p t s  n  , where k = 1 , 2 ,  and 

4 . I f  more t h a n  one s u b s c r i p t  j s a t i s f i e s  ( 7 0 ) ,  t h e n  

choose t h e  f i r s t  s u b s c r i p t  j which s a t i s f i e s  ( 7 0 ) .  Now 

c o n s i d e r  f o r  t h i s  s u b s c r i p t  j a  subsequence  ne  such  

t h a t  

f o r  k = 1 , 2 ,  and 4 . Let  

t h e n  (71) and (72) imply Idk (Sna) < 1 . I n  a d d i t i o n ,  

t h e r e  e x i s t  c o n s t a n t s  c  such  t h a t  
k 

where 



The limit in (74) exists, due to the asymptotic 

properties of y, ( t ) ,  for j ="1,2,3, and 4 . The vectors, 
I 

v ( )  , ( )  l3 (m), and V (m) are linearly independent; 
-1 -4 

thus, (73) follows. 

However, relation (73) implies that the right side 

of (75) is positive for sufficiently large 5 ; that is, 

it is bounded away from zero for sufficiently large 5 

since , - ( )  - O a s  n -+ .- and R 

ldkl 5 1 . However, this implies 

is uniformly bounded away from zero, or 



as ne -+ m . This contradicts (68). Hence, relation (69) 

is false, that is cjmin (<) are uniformly bounded for 

j = 1,2, and 4 and 1 5  151 < . 
If the c (6) are bounded, then consider jmin 

The term in braces on the right side of (76) tends to zero 

as 5 -t a . The first term on the right side of (76) is a 

positive constant. Hence, 1 l\i3 (5) +clmin ( ~ ) ~ ~ ( < ) + * * * l  1 
is uniformly bounded away from zero. Q . E . D .  

LEMPLA 3: If yj(<)~iy.(S)l for j = 1,2,3, and 4 
-3 

and the roots of the dispersion relation (13) are equal, 

- then that is, X1 = X2 - 7 , 

for j = 1,2, and 4 and 1 5 161 < and 



f o r  1 5  151 < . 
PROOF : 

The a n a l y s i s  f o r  conclusion (77a) i s  t h e  same a s  

t h e  proof f o r  (60a) i f  

and V (6) and V (5) a r e  def ined  i n  t h e  proof of lemma 2 .  
-3 -4 

The a n a l y s i s  i n  lemma 2 w i l l  then e s t a b l i s h  conclusion 

(77a) f o r  lemma 3 .  



I n  o r d e r  t o  e s t a b l i s h  c o n c l u s i o n  (77b) of lemma 3 ,  

c o n s i d e r  

1 - 

v -1 (5)  = ~ ~ z , ( 5 )  

The v e c t o r s  V (5)  and V (5)  remain t h e  same, t h a t  i s ,  
-3 -4 

V (5)  and x 4 ( 5 )  a r e  d e f i n e d  i n  t h e  p roof  of lemma 2 .  No 
-3 

o t h e r  m o d i f i c a t i o n s  need  be  made i n  t h e  a n a l y s i s  of 

lemma 2 t o  comple te  t h e  p roof  of lemma 3 .  Q.E.D. 

LEME.IA 4 :  If  y j ( 5 ) ~ i y j ( 5 ) }  - f o r  j = 1 , 2 , 3 ,  and 4 

and, h l  and h 2  a r e  t h e  r o o t s  of  t h e  d i s p e r s i o n  r e l a t i o n  

( 1 3 ) ,  t h e n  



and 

where the relations (78) are satisfied uniformly for 

1 5 151 < and the constants M i j  can be determined 

independently of If Al f h 2  , then the constant 

c in relations (78a) and (78b) can be set equal to zero. 

- I If X, = A 2 - 7 7  then the constant c can be chosen to 

be an arbitrarily small, positive number. 

PROOF:  If lEO1 were bounded above by some finite 

constant, then lemma 4 would be trivial. Thus, it is 

necessary to consider only 15 1 large. 
0 

For an arbitrary E > 0 prescribed, there corre- 

sponds a finite constant M ( < )  such that for / <  1 2 M ( E )  , 



for h l  f X2 

and 

Relations (79)  through (83) are simply the basic 

asymptotic properties of the formal truncated asymptotic 

expansions. Thus, for 151 2 ~\,I(E) it is necessary to 

consider only the asymptotic estimates since 

for 151 >&I(&) , 



Consider  

where MI < and h l  # h 2  . R e l a t i o n  (85) f o l l ows  from 

r e l a t i o n s  (79) and (84 ) .  S ince  t h e  s o l u t i o n s  of  (25) a r e  

capab le  of  on ly  a  bounded growth on a  bounded i n t e r v a l ,  i t  

i s  c l e a r  t h a t  M1 can be chosen s u f f i c i e n t l y  l a r g e  so  

t h a t  r e l a t i o n  (85) i s  v a l i d  f o r  1 I 151 < . I n  a d d i -  

t i o n ,  r e l a t i o n s  (79) and (84) imply 

f o r  0 < M 2  < . Thus, 

- t h e n  S i m i l a r l y ,  i f  X1 = h2 - - 2 ' 

s i n c e  Ifin 51 5 G l < l c  

f o r  1 F 1 5  1 < and a r b i t r a r i l y  sma l l  c  > 0 . Hence, 

conc lu s ion  (78a) f o l l ows .  S i m i l a r l y ,  conc lu s ion  (78b) 

f o l l o w s .  



NOW c o n s i d e r  1 ~ ~ l ~ t ) ~ l / ~ l ~ 4 ( t ) ~ ~ ~  

and 

R e l a t i o n s  ( 8 6 )  and (87) a r e  a  consequence o f  ( 7 9 ) ,  ( 8 3 1 ,  

and ( 8 4 ) .  The c o n s t a n t s  M 3  and M s a t i s f y  
4 

0 < M, < M 4  < ; f o r  t h e  p r o p e r  c h o i c e  of  M j  and M 4  

r e l a t i o n s  (86) and (87) a r e  s a t i s f i e d  f o r  1 L 151 < . 
Thus,  

However, f o r  a r b i t r a r y  A1 t h e  f u n c t i o n  

Rehl+$ R e Z ( ~ - 6 )  
e  JY i s  u n i f o r m l y  bounded f o r  

1 

1 5 151 5 ltO1 < , s i n c e  t h e  f a c t o r  i s  

c a p a b l e  of  o n l y  a l g e b r a i c  growth a s  151 i s  d e c r e a s e d  from 

ReE( ~ f -  JG) 
1 ~ ~ 1  and e  I'T d e c r e a s e s  e x p o n e n t i a l l y  f a s t  a s  



/ <  1 is decreased from 1 to 1. Hence, relation (88) implies 

for 1 I < I  5 lgO1 , or conclusion (78c) is established. 

Similarly, conclusion (78d) can be established. For the 

- - the analysis of (78d) must be modified. case h l  - h 2  - 

The function , where c is an 

arbitrarily small positive constant, must be considered. 

Since this function is uniformly bounded for 

1 2 151 5 1 < 0 1  < conclusion (78d) is established in all 

cases. 

In order to establish conclusion (78e) consider 

l IY, tt) l I/ l Ir,t<) l I .  

and 

where 0 < M 6  < M 5  < and 1 < I <  1 < rn . Hence, 



for 1 I f ; /  5 < , and conclusion (78e) is estab- 

lished. Similarly, conclusion (78f) can be established. 

Consider 1 1 y3 (5) / 1 / 1 1 y4 (5) 1 1 . 

and 

where 0 < M8 < $I7 < and 1 1  < . Hence, 



Reso( 4 ~ - % I  
but e ' Y  - < I for 1 5  151 i 1 ~ ~ 1  < Q.E*Da 

Theorem 7 is a consequence of lemmas 2, 3, and 4. 

Actually, estimate (59c) can be improved but it is unim- 

portant in what follows. 

Now consider the error E in (45). Due to the 
-0 

asymptotic nature of 2 (<), Rje(<o;So) + 0 for suffi- 
j ,L 

ciently large L as Ito] ; that is, if E is the -0 

vector error associated with the initial vector (to). 
j ,L 

LEMMA 5: If 7 (6) is the formal truncated expan- 
-j , L  

sion computed by method I in Appendix B.l and r (So) in 
A 

j e 

relation (45) is equal to 2 (to), then go in (45) 
j , L  

satisfies 

where y. (S) ~ { y .  (S) 1 ; that is, 
3 3 

In addition, the E~ in relation (58) satisfy 



and 

For j = 1 , 2 , 3 ,  and 4 . The c o n s t a n t  c  i n  r e l a t i o n s  

(89a) and (89b) c a n  be  s e t  e q u a l  t o  z e r o  i f  t h e  r o o t s  of  

t h e  d i s p e r s i o n  r e l a t i o n  a r e  d i s t i n c t  and s e t  e q u a l  t o  an 

- 1 a r b i t r a r i l y  s m a l l  p o s i t i v e  c o n s t a n t  i f  XI = X2 - - . 2 

PROOF : 

a s  t o  -+ a3 . R e l a t i o n  (90) i s  a  consequence  of  t h e  asymp- 

t o t i c  n a t u r e  o f  t h e  fo rma l  t r u n c a t e d  expans ion  ( t o ) .  
j , L  

I t  w i l l  be  c o n v e n i e n t  f o r  t h e  a n a l y s i s  t o  i n t r o d u c e  t h e  

f o l l o w i n g  v e c t o r s  : 

X 
v . ( s )  = E j y . ( < )  ( j  = 1 o r  2 ,  hl i h2) , 
-3 -3 



and 

There e x i s t  c o n s t a n t s  c  c a n d c 4  such  2 '  3 '  

t h a t  

and 

Since  t h e  v e c t o r s  IT.(() a r e  un i fo rmly  bounded f o r  
-3 

j = 1 , 2 , 3 ,  and 4 , t h e  lemma w i l l  be e s t a b l i s h e d  i f  

bounds can  be found f o r  1 c . l .  
3 - 

Consider  t h e  v e c t o r s  V .  (<) d e f i n e d  by 
-7 



and 

then the vectors v.(<) are uniformly bounded since 
-3 

and - 5 e  + c - + . . *  
-0,3 - 1 , 3  

Thus, the vectors fk(5) are uniformly bounded and 

constants dk exist such that 

4 4 qc (5,) = dkc(~O) 9 

k =  k-k k =  

where 

r = d l ,  c = d 2 ,  
I 2 if hl # h Z  ; 



and c = -d4 + J c  d3 . 4 - 

The lemma will be established if it can be shown 

that 

for 1 5 < . This can be established if the 

inverse of ?(<),  where 

"-1 is shown to be uniformly bounded. However, V (5) can be 

constructed from cofactors of ?(<) divided by det v ( 5 ) .  

Since v ( < )  is uniformly bounded and continuous, it follows 
that the cofactors and the determinant of v(5) are con- 

tinuous and uniformly bounded. In addition, the determi- 

nant of v(5) is strictly nonzero since the columns of 

?(<) are linearly independent. For large 5 the columns 



b  c o f  a ( < j  approach  t h e  v e c t o r s  h r l ,  -o ,2, , 3 ,  and c  
o r 3  

and t h e s e  v e c t o r s  a r e  l i n e a r l y  independen t  ( s e e  lenuna B1 

i n  Appendix B . 1 ) .  Hence, 

d e t  q ( < )  -+ d e t  [ b  b  c c  ] > O  
- 0 , l '  - 0 , 2 '  - 1 , 3 '  - 0 , 3  

a s  < -+ . Thus ,  d e t  5(5) i s  u n i f o r m l y  bounded away from 

z e r o .  Q . E . D .  

TliEOREM 8 : The a s y m p t o t i c  c o n t i n u a t i o n  problem can 

be s o l v e d .  

PROOF: Lemmas 2 ,  3 ,  and 5 and theorem 7 imply t h a t  

and 



for 1 5 \ < I  5 ltol < , However, L can be chosen 
18 arbitrarily large in relations (91) through (94). 

Hence, R (<;EO) can be made arbitrarily small by choosing 
j e 

L and Eo sufficiently large. Q.E.D. 

Thus, in principle, the continuation problem can be 

solved by continuing the initial vectors (EO) to 
j , L  

1 < = I for sufficiently large L and to . Therefore, it 
1 

would appear that only a numerical integration is required 

1 
to obtain approximate values for y. (6) at 5 = - . 

I 1 

Theoretically this is true, but in practice this proce- 

dure may require more precision than is feasible. 

For the theoretical investigation of the error 

E (<;to), it was possible to neglect errors which propa- 
j e 

gate in an unbounded manner as E0 tends to infinity. 

For example, consider EIe(<;t0); then, due to theorems 2 

and 3, it seemed reasonable to neglect errors which ini- 

tiate nlultiples of Q (5) , the transition layer solution. 

Thus, from relation ( 5 8 ) ,  it is easily shown that 

Ele(~;tO) 5 Icll 1 lxl(t)l 1 + 1 /y2(E) 1 / + k3/ 
l 3  .   ow ever, lI~l(t)Il and IIY~(E)II grow at 

essentially the same rates as 151 is decreased and 

181f the roots of the dispersion relation differ by 
an integer, then the formal asymptotic solutions are not 
completely developed in Appendix B.l (see case 3 in 
Appendix B. 1. ) 



1 \r3 (6) 1 ( decreases exponentially fast. Hence, if 

I ckl 1 14(5,) 1 1 is made sufficiently small it is expected 

that Ele(<;<,) can be made small. The analysis which cul- 

minated in theorem 8 justifies this heuristic argument. 

From a numerical or practical point of view the 

error ls41 I lv4(<)I I cannot be ignored since the solution 

x4i<) grows exponentially fast as / < I  is decreased. Thus, 

the term 1 E~ 1 1 1x4(<) / 1 could greatly exceed 1 /yl(<) 1 / if 

I<,[ is large and 151 << . From a theoretical point 

of view it is unimportant how large I c4 / I IL4(<) 1 1 
becomes, but from a numerical standpoint it is extremely 

important. Assuming that the numerical calculations are 

capable of maintaining a small relative accuracy (recall 

that relative accuracy is roughly a measure of the number 

of significant figures maintained in the calculations), 

then it is necessary to append some process which controls 

the multiple s4y4(<) present in the approximate value of 

yl(<). It is of the utmost importance to ensure that 

1 c4 1 / /y4 (5) / / cannot greatly exceed 1 l yl(<) I I if only 

finitely many significant figures are maintained in the 

calculations. Otherwise, all of the significant figures 

may merely reflect the useless vector s4&(<). 

Similarly, in order to compute approximate values 

of y (6) it is necessary to control the growth of cqy4(<) -2 



that is, limit the multiple of the transition layer solu- 

tion present in the approximate solution -y- (5). In order 2e 

to compute approximate values of x (5) it is necessary to 
3 

limit the multiples of x1 (5) ' -y2 (5). and -y4 (5) present in 

Y~~ (5) . This is difficult, since each of these solutions 

dominates 1 (5) for 151 decreasing and intermediate 
3 

rounding and truncation errors initiate multiples of 

x1 (5) , y2 ( 5 ) '  and -y4 (5) . The canonical form which was 

introduced in Section 4.1 (see theorems 4 and 5) provides 

the necessary error control. 

If 

where y (5) is defined in (45)' then 
je 

Relation (97) would require at least N significant 

figures to be carried in the calculations. Even if (97) 

can be maintained, no useful bound can be placed on 

R. ( < ; G o )  since 
I e 



where f (5) i s  d e f i n e d  i n  lemma 1. Only f o r  t h e  c a s e  
j 2 

j = 4 , t h e  t r a n s i t i o n  l a y e r  s o l u t i o n ,  can  ( 9 7 )  be used 

t o  e s t a b l i s h  t h a t  

s i n c e  {h (6) I  c o n s i s t s  of  a  s i n g l e  un ique  member y4 (6) . 
For j = 1 , 2 ,  o r  3 i n  r e l a t i o n  ( 9 8 ) ,  no u s e f u l  bound 

r e s u l t s  s i n c e  t h e  f a m i l i e s  { y . ( E ) I  c o n t a i n  a r b i t r a r i l y  
3 

l a r g e  m u l t i p l e s  o f  yq ( E )  . Hence, 1 1 y (5 )  1 1 f  ( )  i s  i n  

g e n e r a l  unbounded, t h a t  i s ,  n o t  u n i f o r m l y  bounded f o r  t h e  

f a m i l y .  S i n c e  i t  i s  d e s i r e d  t o  make R ( 5 ; t 0 )  s m a l l  f o r  
j e 

t h e  n u m e r i c a l  c a l c u l a t i o n s ,  i t  i s  n e c e s s a r y  t o  append some 

c o n d i t i o n  which e n s u r e s  t h a t  I l y . ( < ) l  l / f  ( 5 )  i s  bounded 
I j 2 

u n i f o r m l y  on 1 2  151 < . 
THEOREM 9 :  I f  t h e  r o o t s  of t h e  d i s p e r s i o n  r e l a t i o n  

a r e  d i s t i n c t ,  t h e n  

f o r  j = 1 , 2 ,  and 3 and 1 i 151 < a where y j ( 5 ; < )  a r e  

t h e  c a n o n i c a l  v e c t o r s  ( s e e  theorems 4 and 5 )  and t h e  f u n c -  

t i o n s  f (5)  a r e  d e f i n e d  i n  lemma 1. 
j2 

PROOF: L e t  Y ( < )  be  a  fundamenta l  s o l u t i o n  of t h e  

d i f f e r e n t i a l  e q u a t i o n  ( 2 5 )  o f  t h e  form 



where zj (5) & { y j  (5) } , If v . ( 5 ) d L j ( C ) }  -I and 

t hen  
.- 

V4(5) = y4 (5 )  9 

x l ( O  - ~ ( 5 )  = c1Z4(5) 9 

y 2 ( 5 )  - ~ ~ ( 5 )  = c 2 ~ 4 ( 5 )  9 

and ~ ~ ( 5 )  - ~ ~ ( 5 )  = ay1(5) + b ~ , ( 5 )  + cZ4(5)  

Thus, d e t  Y (5)  d e t  V(5) 

i f  Y (5) i s  d e f i n e d  by 
C 

and 

Y m i n  (5)  = [ ~ l m i n  (5)  xzmin (5) , Y 3 m i n  (51, x4mi&5)l 

where y . (< ; 5) i s  t h e  c anon i ca l  form of y o  (5) f o r  
-7 J 

j = 1 o r  3 and yT (5;S) i s  t h e  temporary canon i ca l  form 

de f ined  i n  r e l a t i o n  (41) .  The v e c t o r  y T ( < ; < )  d i f f e r s  from 

y2 (5) on ly  i n  t h a t  m u l t i p l e s  of y 4 ( < )  and y1(5) a r e  added 

t o  x2 (5) t o  gene ra t e  (5 ;<) . The v e c t o r s  y j m i n  (6)  

s a t i s f y  



and f o r  e a c h  f i x e d  5 , 

Yj jmin (5) = yj  (5)  

f o r  some y .  (5) €{yj (5) 1 .  However, yjmin (<) i s  n o t  i n c l u d e d  
J 

i n  { y j ( 5 ) I  s i n c e  

f o r  one p a r t i c u l a r  member y .  ( 5 ) & { y j  ( < ) I .  Only f o r  
I 

j = 4 does  

Lemma 1 a s s u r e s  t h e  e x i s t e n c e  of y jmin(S) .  I n  a d d i t i o n ,  

d t Y c ( < )  = d e t  Y ( 5 )  d e t  Y(5)  . 
m i n  

RECALL: I I I I i s  t h e  maximum norm, 

l d e t  Y m i n  ( 5 )  1 5 4 !  I Ixlmin (511 I I I x , , ~ ,  (511 I I l x3min(<) /  I 

x I Ixilmin (<I I I 



s i n c e  d e t  Yc(5) i s  t h e  p r o d u c t  o f  o n l y  t h e  maximum com- 

ponen t s  of y 1 ( 5 ; 5 ) ,  y T ( 5 ; 5 ) ,  y 3 ( 5 ; 5 ) ,  and y 4 ( 5 )  Thus,  

The f i r s t ,  t h i r d ,  and f o u r t h  f a c t o r s  i n  r e l a -  

t i o n  (101) a r e  a l l  g r e a t e r  t h a n  o r  e q u a l  t o  one .  Thus,  

r e l a t i o n  (101) w i l l  p r o v i d e  a bound f o r  e a c h  of  t h e s e  

te rms i f  I 1 yT (5 ; 5) 1 I / 1 1 zzmin (5) I I i s  bounded away from z e r o  

u n i f o r m l y  f o r  1 5  151 < . 
Consider  t h e  f u n c t i o n  f T ( S )  d e f i n e d  by 

m i n  

f T ( 5 )  = o v e r  a l l  I Iz2 (5)+c1 (5)  y1 (5) + c 4  ( 5 ) y 4  (5)  1 I . 
c ( 5 )  and c ( 5 )  1 2 

I t  c a n  be shown ( a n a l y s i s  s i m i l a r  t o  theorem 6) 

t h a t  f T ( < )  e x i s t s  and i s  c o n t i n u o u s  i n  6 f o r  

1 L 151 < . I n  a d d i t i o n ,  

and 



as 5 -+ (see Appendix B. 2) and b ,1, b, 2 ,  and c 
- 0 , 3  

are linearly independent. By analysis similar to lemma 2 

it follo~is that 

but 

Hence , 

Thus, from relations (101) and (-102) 

for j = 1 or 3 and 

Clearly, the subscripts j = 1 and j = 2 can be inter- 

changed when the roots, h l  and h 2  , of the dispersion 

relation are distinct. This amounts merely to a renum- 

bering of the inviscid solutions. Therefore, if 



i s  un i fo rmly  bounded f o r  a r b i t r a r y  h l  a s  

I l x 2 ( 5 ; 5 )  I I 
long a s  A l  # h 2  , t h e n  II El 1 1  i s  un i fo rmly  

Y 2 m i n  ( 

bounded f o r  a r b i t r a r y  h 2  f A1 . Q.E.D. 

- 1 I f  h l  = A g  - - 2 , t h e n  

f o r  1 I 151 < . Thus, 

f o r  j = 1 o r  3 and 

S ince  IRn 51 grows ve ry  s lowly t h e r e  i s  ve ry  l i t t l e  a d d i -  

- 1 t i o n a l  d i f f i c u l t y  f o r  t h e  c a s e  h l  = h 2  - Z- . 
Thus, i n  a l l  c a s e s  t h e  canonical .  form l i m i t s  t h e  

0 l l j ; l l l l j i n l l .  ~ n  so  do ing ,  if y j , i 5 ; 5 )  

has a  sma l l  r e l a t i v e  accuracy ,  then  it a l s o  has  a  sma l l  

r e l a t i v e  e r r o r .  

The s o l u t i o n s  of  t h e  d i f f e r e n t i a l  e q u a t i o n  (25) 

grow by on ly  a  bounded f a c t o r  on any bounded i n t e r v a l ;  

t h a t  i s ,  i f  y (4 )  i s  a s o l u t i o n  of (25) t hen  



where M < a can be determined for 1 L 151 < a . There- 

fore, it is not necessary to continuously reduce y (<)  to 
j e 

canonical form in order to control the error growth. It 

is only necessary to reduce y (5) to canonical form 
-j e 

several times over the interval of numerical integration. 

The length of the interval over which a numerical integra- 

tion can safely be performed without reduction to canon- 

ical form obviously depends on the parameters o, k, and y 

and the precision which is maintained in the calculations. 

To some extent experience is required, but a good first 

estimate of the length of an interval can be obtained by 

considering the different asymptotic rates of growth (see 

Section 4.1, step b in the numerical algorithm). 

The accuracy of the calculations, which were per- 

formed for the viscous problem formulated in Section 2, is 

discussed in Section 5 and Appendix B.2. 



5. COMPUTATIONS AND CONCLUSIONS 

5.1 PRELIMINARY REMARKS AND ORGANIZATION OF THE 

COMPUTATIONS 

The viscous problem is solved for small E > 0 

when equations (32) and (33) are solved. The most diffi- 

cult numerical problem encountered is the determination 

1 of vectors at 5 = T- 
which specify the different asymp- 

1 

totic solutions. There are several cases which must be 

considered separately. The individual cases can be clas- 

sified according to the character of the roots of the 

dispersion relation. 

CASE 1: The roots of the dispersion relation, 

and h2 , are real and distinct. In addition, 

Upon solving equation (32), constants e e e 
1' 2' 3 '  

and e4 are determined such that 

e DC (5) + e DC (5) = INV2(E) - e INV (5) 1-1 2-2 3 --1 

- e4TLSOL(E) . 

1 If h l > - > X  2 2 ' then 



A,-h 
However, 5 becomes n e g l i g i b l e  a s  E -+ 0  , 

f o r  O < Z I B < ~ .  For c s 1 0  t h e  v e c t o r  

A , - A  
e b  5 3-0,l 

c a n  be  n e g l e c t e d  below t h e  t r a n s i t i o n  r e g i o n  

2 
e x c e p t  f o r  h 2  - h l  = 0  . The c a s e  0 2 / y  - k  = 0  i s  a  

s p e c i a l  s i t u a t i o n  which i s  d i s c u s s e d  i n  c a s e  4 .  

Thus,  above t h e  boundary l a y e r  and below t h e  t r a n -  

s i t i o n  l a y e r ,  t h e  s o l u t i o n  of  t h e  v i s c o u s  problem c a n  be 

a c c u r a t e l y  approximated  by a  m u l t i p l e  of  t h e  i n v i s c i d  

s o l u t i o n  w i t h  f i n i t e  k i n e t i c  ene rgy  i n  an  i n f i n i t e  column 

of f l u i d .  

I f  0  < A I z  I B  < , t h e n  (107) i m p l i e s  t h a t  

t h e  s o l u t i o n  w i t h  f i n i t e  k i n e t i c  ene rgy  i s  approached u n i -  

fo rmly  on t h i s  i n t e r v a l .  The o n l y  c a l c u l a t i o n s  which must 

be per formed f o r  r e a l  hl and h 2  a r e  f o r  h l  s h 2  

( c a s e  3)  and 021y - k 2  "-- 0  ( case  4 ) .  

CASE 2 :  The r o o t s  of t h e  d i s p e r s i o n  r e l a t i o n  (13) 

a r e  complex. For  t h i s  c a s e  t h e  r e s u l t s  o f  Yanowitch 

[ 2 , 3 ]  and Lindzen [ 4 ]  imply t h a t  f o r  s m a l l  8 , t h e  

d i m e n s i o n l e s s ,  v e r t i c a l  wave number d e f i n e d  i n  (20) , t h e  

r e f l e c t i o n  c o e f f i c i e n t  i s  l a r g e  and f o r  8 l a r g e  t h e  

r e f l e c t i o n  c o e f f i c i e n t  i s  s m a l l .  Thus ,  i t  i s  e x p e c t e d  

t h a t  r e f l e c t i o n  i s  s i g n i f i c a n t  n e a r  t h e  b o u n d a r i e s  of t h e  

shaded r e g i o n s  i n  f i g u r e  1. 



Aside from a scaling constant, the solution above 

the boundary layer and below the transition layer is 

approximately 

is a solution of the inviscid differential 

equation (12) for i = 1 or 2 and normalized so that 

U,(o) = 1 . In addition, the inviscid solutions are num- 
I 

bered such that has upward energy flux and 

has downward energy flux. The constant rR is, of 

course, the reflection coefficient. 

If E > 0 is specified, then rR is determined 

from the constant e3 in (32). The scalar e3 might be 

considered the asymptotic reflection coefficient. The 

constant e is invariant (see theorem B2 in Appendix 
3 

B.2) as E + 0 . However, K does change as E + 0 . 
R 

If 6 = Rn ( 5 )  , then 

l r R l  is asymptotically invariant as E + 0 

for fixed o and k since le31 is invariant. 

(109a) 



Arg K - 2 B 6  is asymptotically invariant as 
R 

E -+ 0 , for fixed o and k and the 

acoustic wave 

Arg r R + Z 8 6  is asymptotically invariant as 

E 3 0 for the gravity wave 

Due to relations (log), it is more useful to compute 

arg K f 2 B 6  than arg K ~ .  
R 

It is reasonable to expect arg K to change as 
R 

E 3 0 since the reflection takes place in the transition 

region. -he transition region is in the vicinity of 

z = en (k) and this point recedes to infinity as E + 0 . 
Thus, the reflection coefficient can be expected to 

undergo a phase change as E -+ 0 . 
In Appendix B (see B.2, relations (B74) through 

(B84)) it is shown that a fixed error tolerance 

on the asymptotic solutions resulted in an approximate 

value of eI where 



and for / < I  2 /cI/ the truncated asymptotic expansions 
have a minimum relative error less than or equal to 10'~. 

For a fixed value of k > 0 , o- is bounded away from 

zero in both the acoustic and gravity wave regions (see 

figure 1, Section 1.2) as 6 -+ 0 . If the initial vectors 

for the canonical numerical integration from 5, to 

1 5 = -;- are computed by method I1 (see B.1), then it is 
1 

obvious that the asymptotic initial vectors with inviscid 

asymptotic behavior tend uniformly towards each other as 

6 - 0 . If the vectors DC (5) , DC2 (S) , INV1(<), and 
-1 - 

TLSOL(C) remain linearly independent as 6 -+ 0 , then 

as 6 -+ 0 since / e  I in equation (32) tends to one as 
3 

6 -+ 0 . In addition, if E > 0 is held fixed, then 

as 6 -+ 0 since e -+ 1 . Relations (111) and (112) are 
3 

an immediate consequence of (31) and the above assumption 

on the linear independence of DC [S), DC2(S), INV1[() and -1 

TLSOL (S) . 
CASE 3 :  The roots of the dispersion relation are 

- - 1 equal, that is, hl - h2 - or a = For this case 4- ' 

the solution of the viscous problem in the inviscid region 

is approximately 



is an inviscid solution and, for 

i = 1 or 2 , is defined in (18). Since the asymptotic 

connection relations (32) are invariant as E -+ 0 it can 

be shown that B -+ as E -+ 0 . However, 

as E -+ 0 and hence [ ~ ~ ~ : ~ ]  cannot be neglected in the 

entire in~riscid region. It should be noted that A -+ 0 

as E -+ 0 since the kinematic boundary condition 

(W(0) = 1) requires A x B  to remain finite as E -+ 0 . 
CASE 4: The roots of the dispersion relation are 

1 2 
- - Y - 1  and h2 - 0 

hl - y or - -  k2 = ' o  . In the 
Y Y 

inviscid region the solution of the viscous problem is 

approximately given by 



is an inviscid solution and, for 

i = 1 or 2 , is defined in (16). The asymptotic connec- 

tion relations (32) determine the constant D and since 

the asymptotic connection relations are invariant it fol- 

lows that 

1 as E -+ 0 . Hence D -+ 0 as E -+ 0 since Xl > - > X 2 2 .  

If y = 1.4, then 

and 

The kinematic boundary condition (W(o) = 1) requires 

near z = 0 as E -+ 0 , but WZ(z) is identically zero. 

Thus, 

as E -+ 0 , that is, C -+ as E -+ 0 . A resonant 

situation develops as E -+ 0 . For a finite value of E 



like 10 -11 there should be a noticeable resonant peak for 

oL the scalar C in the vicinity of - - k2 = 0 . 
'i 

In order to describe the resonant peak, it is useful 

to calculate the modulus of C in relation (115) for 

02/y - k2 ~ i :  0 , in addition to the obvious calculations 

required for 02/y - k2 = 0 . For this purpose it is best 

to normalize the inviscid solutions so that solutions (16) 

are approached as 021y - k2 + 0 . This is easily accom- 

plished; consider 

and 

where hl and h2 are assumed real and 

for y = 1.4 . 
Not only is it important to organize the computa- 

tions but it is also necessary to consider the actual 



computational devices which perform the calculations. The 

calculation of the DC solutions was accomplished on a 

UNIVAC 1108 in double-precision (about 18 significant 

figures). Three hundred terms were generated from the 

recursion relation (A10) in Appendix A and then summed at 

1 5 = - . Due to certain compiler difficulties it was not 
1 

possible to perform all the computations on the 1108. The 

calculation of asymptotic initial vectors and the canon- 

ical numerical integration was carried out on an IBM 7094 

in single-precision (about eight significant figures). 

The error check (step 5 of the algorithm in Section 4.1) 

indicated that approximately four significant figures are 

maintained in the calculations. 

5.2 NUMERICAL RESULTS 

This section contains the numerical results for 

the viscous problem formulated in Section 2. The calcu- 

lations were performed for E = 10 -11 , which is com- 

parable to a value in the earth's atmosphere. The other 

dimensionless parameters, k and o , when equal to 

unity, correspond to a horizontal wavelength of about 

45 km and a frequency of 2.5 radians per minute, respec- 

tively. 

CASE 1: The roots of the dispersion relation are 

real and distinct. In Section 5.1 it was shown that the 



only calculations required are for X, % A 2  (case 3) and 

2 
02/-y - k n o (case 4). 

CASE 2: The roots of the dispersion relation are 

complex or the inviscid solutions are wavelike in z . 
The reflection coefficient, rR in (108), is computed for 

various values of o and k . Due to the remarks made in 

Section 1 about some recent research of Yanowitch, it will 

be worthwhile to compare lrRl and e - or equivalently 

en / K ~ (  and -nB. To avoid confusion K~~ will denote the 

acoustic reflection coefficient and K~~ will denote the 

gravity reflection coefficient. In order to construct 

figures 2 through 7 (pp. 119-124) the values of 
K~~ 

and 

K 
R A 

were computed for B = .01, .l, .2, .4, .8, and 1.6 . 

For k =  . 5 ,  K RA was computed for the additional 6 

values of .5, .6, .7, . 9  and 1.0. 

If the reflection coefficients are considered as 

functions of the horizontal and vertical wave numbers, 

then figures 2 through 7 imply 

l g ~ h e  calculations which were performed for 

k = .005 lead to the relation I K~~ ( .  005 ,B) I > e -nP 

However, ~rR,(.0O5,B)l - e -"@ was very small and about 

equal to the estimate of the error obtained from step 5 of 
the numerical algorithm. 



In order to test relation (122) and determine any 

sensitivity to changes in y , some computations were per- 

formed for y = 4 . Surprisingly, the acoustic reflection 

coefficient was in much better agreement with e -*' than 

the gravity reflection coefficient for y = 4 . Thus, it 

appears that (122) is a quantitative rather than a quali- 

tative relation; nevertheless (122) is a useful summary 

of the calculations. 

In order to completely specify K 
RG 

and K~~ it 

is also necessary to determine the argument of these com- 

plex quantities. Due to the remarks in Section 5.1 it is 

best to compute arg rRG(k,B)+2f36 and arg ~,,(k,f3)-266 to 

obtain a useful profile of the argument of the reflection 

coefficient as E + 0 (tables I through VII) . 

TABLE I. - ARGUMENT OF THE REFLECTION COEFFICIENTS 

FOR k = .005 



TABLE 11. - ARGUMENT OF THE REFLECTION COEFFICIENTS 

FOR k = .05 

TABLE 111. - ARGUMENT OF THE REFLECTION COEFFICIENTS 

FOR k = .25 



TABLE IV. -ARGUMENT OF THE REFLECTION COEFFICIENTS 

FOR k = . 5  

TABLE V. - ARGUMENT OF THE REFLECTION COEFFICIENTS 

FOR k = .75 



TABLE VI. - ARGUMENT OF THE REFLECTION COEFFICIENTS 

FOR k = 1.0 

TABLE VII. - ARGUMENT OF THE REFLECTION COEFFICIENTS 

FOR k = 1.5 



The figures 2 through 7 and tables I through VII 

can be used to construct a multiple of the solution to 

the viscous problem above the boundary layer and below 

the transition layer. Thus, it is desirable to obtain 

some estimate of the lower boundary of the transition 

layer and the upper boundary of the boundary layer. 

In Section 3.2, relation (30) implies that the 

boundary layer solution decreases by a factor - e as z 

is increased by . For E = 10 -11 a linear combi- 

nation of inviscid solutions agrees with the solution to 

the viscous problem to four significant figures if 

z < z t . ~ .  and b.2. - 

The upper boundary of the boundary layer varies from 

several meters for the gravity wave (k = .005, 6 = 1.6) 

to less than one-half meter (k = 1.5, B = 1.6) for the 

acoustic wave. 

In order to obtain a more detailed description of 

the solution to the viscous problem, some computations 

were performed which illustrate how the transition region 

joins the inviscid and viscous regions. It is useful for 

this purpose to consider plots of ( ~ ( 6 ) I x m  (ordinate) 

versus !?,n J ( <  1 - (abscissa) and Iw(<) ( x m  versus Qn m. 



The ordinates ] U  (6) 1 x J m  and 1 w (S) I are proportional 

to the square roots of the kinetic energies associated 

with the horizontal and vertical velocity components, 

respectively. The abscissa, Rn m, is proportional to 
z/2 and hence a one-unit change in Rn corresponds to 

two scale heights (see figures 8 through 14). It should 

be noted that convenient multiples of the viscous solu- 

tions are plotted in figures 8 through 14. 

In figures 8 through 14 the inviscid region is 

easily identified. It appears that the inviscid region 

begins at about z = 20 (140 km) and extends downward 

from this height, that is, ztSR is approximately 20 

scale heights. The oscillation about the dotted line is 

caused by alternate constructive and destructive inter- 

ference of the inviscid solutions with upward and down- 

ward energy propagation. The dotted line, in figures 8 

through 14, corresponds to a multiple of the inviscid 

solution which has upward energy propagation and hence 

satisfies the radiation condition. The amplitude of the 

oscillation about this dotted line is an indication of 

how poor or good an approximation the radiation condition 

is. For f3 = 1.6 the radiation condition appears to be 

quite good (in the inviscid region); if B = .4 it is 

unsatisfactory. Relation (122) implies that the 



radiation condition introduces an error of about 4 per- 

cent for @ = 1 , and for larger values of @ a 

smaller error is expected. Thus, if the vertical wave- 

length is less than 45 km (6 > 1) the radiation condition 

is substantially correct, 

CASE 3: The roots of the dispersion relation are 

1 equal or a = a - - The constants A and h l  - Xz - T .  

and B in relation (113) are listed in tables VIII and 

IX. 

TABLE VIII. - THE CONSTANTS A AND B , DEFINED IN 

RELATION (113), FOR C I ~ / ~  - k2 < 0 AND Y = 1 . 4  . 



TABLE IX. - THE CONSTANTS A AND B , DEFINED IN 

RELATION (113), for 0 2 / y  - k2 > 0 AND y  = 1.4 . 

CASE 4: The roots of the dispersion relation are 

- 1 and h2 - - - or 0 2 / y  - k 2  = 0 . In addi- " - 7  Y 

tion, computations were performed for 

The results of the computations are summarized in 

figure 1 5 .  

There is a noticeable resonant peak for 

a 2 / y  - k 2  = 0 . Varying a by 1 percent results in a 

decrease of I C  I by approximately a factor of lo3 (refer 
to relation (115) and figure 15). 



The boundary l a y e r  s o l u t i o n  i s  n o t  c a p a b l e  of  

r e d u c i n g  U(z)  i n  (115) t o  ze ro  i n  0 ( z ( "bSR w i t h  

n e g l i g i b l e  e f f e c t  on W(z).  The v a l u e  o f  I c I  computed f o r  

-11 
E = 10 depends on t h e  p e c u l i a r  p r o p e r t i e s  of  t h e  

boundary l a y e r  s o l u t i o n .  Other  e f f e c t s  i n  t h e  e a r t h ' s  

a tmosphere more i m p o r t a n t  t h a n  v i s c o s i t y  a r e  b e i n g  

n e g l e c t e d  n e a r  z = 0  . T h e r e f o r e ,  t h e  r e s u l t s  f o r  t h i s  

c a s e  a r e  o f  dub ious  v a l u e .  



ACOUSTIC ........., 
GRAVITY - -- 

THE CURVES Y = -rB, 
Y = En I K,, I , AND 

y = Rn 1 K R A l  ARE 

INDISTINGUISHABLE 

Figure  2 .  - Logarithm o f  t h e  modulus of  t h e  r e f l e c t i o n  
c o e f f i c i e n t s  f o r  k = . 0 0 5 ,  . 0 5  . 



F i g u r e  3 .  - Logar i thm o f  t h e  modulus o f  t h e  r e f l e c t i o n  
c o e f f i c i e n t s  f o r  k = . 2 5  . 



F i g u r e  4 .  - Logar i thm o f  t h e  modulus o f  t h e  r e f l e c t i o n  
c o e f f i c i e n t s  f o r  k = 0 . 5  . 



GRAVITY - -- 

Figure  5 .  - Logarithm o f  t h e  modulus o f  t h e  r e f l e c t i o n  
c o e f f i c i e n t s  f o r  k = . 7 5  . 



GRAVITY - - - 
y = - TCB -----" 

Figure  6 .  - Logarithm o f  t h e  modulus o f  t h e  r e f l e c t i o n  
c o e f f i c i e n t s  f o r  k = 1 . 0  . 





Figure 8. - Viscous gravity waves for k = . 0 5  and 6 = . 4 ,  1 . 6  . 
s=m.  







Figure  11. - Viscous a c o u s t i c  waves f o r  k = . 0 5  and B = . 4 ,  1 . 6  . 
s=m . 



Figure  1 2 .  - Viscous a c o u s t i c  waves f o r  k = . 5  and B = . 4 ,  . 5 ,  .6 . s=m . 



Figure  1 3 .  - Viscous a c o u s t i c  waves f o r  k = . 5  and B = . 4 ,  1.6 . 
s = m  . 



Rn S 

Figure  1 4 .  - Viscous a c o u s t i c  waves f o r  k = 1 . 5  and B = . 4 ,  1 . 6  
s = n l  . 



F i g u r e  1 5 .  - The r e s o n a n t  Lamb wave and 1 p e r c e n t  v a r i a t i o n  i n  

t h e  f r equency  f o r  E = and y = 1 . 4  . The s c a l a r  C 
i s  d e f i n e d  i n  r e l a t i o n  (115) .  



5.3 CONCLUSIONS 

For the case of real distinct roots of the disper- 

sion relation (13) and 0 2 / v  - k2 # 0 , the solution of 

the viscous problem approaches a multiple of the inviscid 

solution with finite kinetic energy in a column of fluid 

of finite cross section as E -f 0 or 11 + 0 .  l lo re over, 

the convergence is uniform on any interval 

0 < A z 5 B < as y 0 (see Section 5.1, case 1). 

This conclusion is reasonable and in complete agreement 

with the results obtained by Yanowitch [2,3] . If 

0 2 / v  
2 - k = 0 a resonant situation develops and the 

limiting case, as E -f 0 , results in a viscous solution 

with a horizontal velocity amplitude which is 

viscosity therefore limits the resonant peak (see case 4 

in Sections 5.1 and 5.2) . 
By far the most interesting case concerns complex 

roots of the dispersion relation, that is, inviscid solu- 

tions which are wavelike in z . Due to the results of 

Yanowitch [ 2 , 3 ]  and Lindzen [4] it seems reasonable to 

expect that 



However, f i g u r e s  2 through 7 i n d i c a t e  t h a t  (125) 

i s  n o t  s a t i s f i e d  f o r  a l l  h o r i z o n t a l  wave leng ths .  Thus, 

t he  modulus of t h e  r e f l e c t i o n  c o e f f i c i e n t  depends on t h e  

model s e l e c t e d ;  f o r  example, t h e  i n c l u s i o n  of compress i -  

b i l i t y  appears  t o  be q u i t e  s i g n i f i c a n t .  

A c a r e f u l  examinat ion of f i g u r e s  2 th rough  7 i n d i -  

c a t e s  t h a t  f  ( k ,  B) , where 

has  a  maximum nea r  k  = @ . I f  Inore g e n e r a l  problems a r e  

cons ide r ed ,  i t  i s  p robab ly  t r u e  t h a t  t h e  mathemat ica l  

model w i l l  p l a y  a  major r o l e  i n  de te rmin ing  1 ~ ~ 1 ,  a t  

l e a s t  f o r  sma l l  v a l u e s  of B . 
Seve ra l  q u a l i t a t i v e  s t a t emen t s  can  be made f o r  t h e  

ca se  of s o l u t i o n s  which a r e  wavel ike  i n  z . 

a .  R e f l e c t i o n  i s  n e g l i g i b l e  f o r  6  l a r g e ,  t h a t  

i s ,  t h e  r a d i a t i o n  c o n d i t i o n  i s  s u b s t a n t i a l l y  

c o r r e c t  ( r e f e r  t o  d i s c u s s i o ~ l  of c a s e  2 i n  

S e c t i o n s  5 . 1  and 5 . 2 ) .  

b .  R e f l e c t i o n  i s  impor tan t  f o r  B smal l  and t h e  

r e f l e c t i o n  c o e f f i c i e n t  t ends  t o  t h e  l i m i t i n g  

va lue  - 1  a s  @ -+ 0 f o r  f i x e d  E > 0 and 

k > 0 ( r e f e r  t o  d i s c u s s i o n  i n  S e c t i o n  5 . 1  

and r e l a t i o n  (111 ) ) .  



c. The modulus of the gravity reflection coeffi- 

cient more nearly equals e - for all va-lues 

of k than does the corresponding acoustic 

reflection coefficient for y = 1.4 (see 

figures 2 through 7). 

The problem formulated in Section 2 is limited to 

small oscillations of the lower boundary z = 0 . An 

estimate of the validity of th'e linearization can be 

obtained by determining the maximum value of 

1 ] 1 1 , where [itfi] is a solution of the vis- 
cous problem. For the cases which were computed, the 

maximum of / ([:t~i] ( 1 satisfied 

where the boundary layer is given by 0 I z 5 z 
b .R.  

and 

-11 
E is assumed to have the value 10 . 

The kinematic boundary condition, W(o) = 1 , is 

equivalent to requiring an amplitude of of the 
0 

"~stimate (127) is correct for k = .05, 0.5, 1.5 , 
and B = . 4  and B = 1.6 for both the acoustic and 
gravity waves. For real distinct roots of the dispersion 
relation, a considerably smaller bound should result 
since the inviscid solution with finite kinetic energy in 
an infinite column of fluid grows less rapidly than 

e z '2  as z increases, 



oscillation of the lower boundary. The amplitude of the 

oscillation scales the solution of the viscous problem. 

Hence, an oscillation of amplitude H or 0.7 cm would 

be more reasonable, that is, consistent with the lineari- 

2 zation. Of course the resonant case 0 2 / ~  - k = 0 

would require a much smaller amplitude in order for the 

linearization to be valid since IU(Z)\ is very large. 



APPENDIX A 

THE REGULAR SINGULARITY 5 = 0 

In  t h i s  appendix t h e  r e g u l a r  s i n g u l a r i t y  5 = 0 

i s  i n v e s t i g a t e d .  Two l i n e a r l y  independent  s o l u t i o n s  of 

t h e  v i s cous  d i f f e r e n t i a l  equa t i on  (25) a r e  developed 

about  5 = 0 , which s a t i s f y  t h e  DC ( 11 ) .  I n  a d d i t i o n ,  

i t  i s  shown t h a t  t h e r e  e x i s t  two o t h e r  s o l u t i o n s  of 

equa t i on  (25) which v i o l a t e  t h e  D C .  

A .  1 THE DC SOLUTIONS 

Assume t h a t  a  fundamental  m a t r i x  s o l u t i o n  of  

equa t i on  (25) can be  expressed  i n  t he  form 

where 

S  a r e  c o n s t a n t  squa re  m a t r i c e s  f o r  
m 

m = 0 , 1 , 2 , 0 e *  

J i s  t h e  Jo rdan  canon i ca l  form of R 

( d e f i n e d  i n  r e l a t i o n s  (24))  

211n a l l  subsequent  c o n t e x t s  t h e  f u n c t i o n s  en< w i l l  
be d e f i n e d  t o  be t h e  p r i n c i p a l  branch.  



So  i s  a  cons t an t  nons ingula r  mat r ix  such ( A 2 4  

t h a t  S o J  = RS, 

c J  = e "OJ and Lnc i s  t h e  p r i n c i p a l  branch (A2d) 

of Rnc 

In o rde r  t o  c o n s t r u c t  So  t he  e igenva lues  and 

e igenvec to r s  of R w i l l  be determined.  I t  i s  e a s i l y  

shown t h a t  t he  e igenva lues  of R a r e  +k and -k and each 

e igenvalue i s  of m u l t i p l i c i t y  two. Only one-parameter 

s o l u t i o n s  a r e  ob ta ined  upon so lv ing  

where 

Thus, t he  Jordan canonica l  form o f  R i s  



In addition to the vectors -1 e and e3 the generalized 

eigenvectors and e4 (solutions of (A6)) must also 

be determined. 

and 

If the vectors ep and e are normalized by setting 
-4 

the first components equal to one, then 

and 



e  e  and e  d e f i n e  t h e  m a t r i x  The v e c t a r s  el, - 2 ,  -3' -4 ? 

t h a t  i s ,  

I f  ( A l )  i s  s u b s t i t u t e d  i n t o  ( 2 5 )  and So  i s  

de f i ned  by (A8), then  t h e  r e c u r s i o n  r e l a t i o n  

'm+l [ ( m  + 1 ) 1  + J ]  + KS [mI + J ]  
= RSrntl m + DS 

m 
(A9 

i s  ob t a ined .  If  s L j )  deno tes  t h e  jth column of Sm , -m 

then (A9) can be w r i t t e n  as 

where 6 1 = 6 3 = 0 ,  6 2  = 6,  = 1 (Al l a )  

and k1 = k 2  = k  , e 3  = e, = - k  . (Al lb)  

The r e c u r s i o n  r e l a t i o n  (A10) can be p l a c e d  i n  t h e  form 



where Dcjl = m 
- [ ( L j  + m + 1)1 - R]'~ (A1 3 a) 

and cCj) = [(Lj + m + 1)1 - R]-~[D - (m + L.)K] . 
m 3 

(A13b) 

Due to the DC (11) the vector solutions corre- 

sponding to j = 3 and 4 will be discarded. Therefore, 

it is only necessary to develop the recursion relation 

CA12) in detail for j = 1 and 2 . 

For j = 1 or 2 , R = k . Thus, consider 
j 



and 

where g = k + m + l  (A14d) 

It is clear that the recursion relation (A12) is 

well definedZ2 as long as the matrix [ ( e  +m+l)I-R] is 
j 

nonsingular for m = 0,1,2,-** . Recall that [-kI-R] 

and [BI-R] are singular matrices since k and -k are 

the eigenvalues of R . Moreover, k is the only 

nonnegative eigenvalue of R and, hence, [(k+m+l)I-R] 

can never be singular for m = 0,1,2,**- . Thus, the 

recursion relation (A12) is always well defined for 

j = l o r 2 .  

Quite obviously, if k is an integral multiple 

of one-half, then the recursion relation (A12) breaks 

down for j = 3 or 4 since [(-k+m+l)I-R] is singular 

- 
2 2 ~ h e  recursion relation (A12) is well defined if 

the v e c t o r s  s ( j )  for j = 1,2,3 and 4 uniquely 
-0 

specify t h e  vectors s ' j '  for j = i , 2 , 3  and 4 and all 
--rn 

positive integral subscripts m . 



when m = 2k - 1 . This difficulty can be overcome by 

introducing a shearing-type transformation [ 8 ,  Chapter 

4, Section 41 of the differential equation (25). This 

tactic is unnecessary since the solutions corresponding 

to j = 3 or 4 are to be discarded because they violate 

the DC. The approach adopted for j = 3 or 4 is one 

that is used over and over again in asymptotics and is 

discussed in Section A.2. 

Since the recursion relation (A12) is well defined 

for j = 1 or 2 the first two columns of @(<), defined 

in (Al), are solutions of equation (25). Denote the , 

first two columns of a(<) by DC (5) and DC (5) , Thus, 
-1 -2 

and - DC2 (5) = s gm+k + (Qn 5)DC (5) . (A15b) -m m= 0 -1 

As 5 -+ 0 , El(<) and DC (5) exhibit the scalar 
-2 

growths 5" and (En 5) 5" or e Lkz and ze -kz as z - t W .  

Hence, DC (5) and DC2 (5) satisfy the DC (11) . The 
-1 

expansions (A15) converge for 0 < 151 < 4/3 since the 

nearest nonzero singularity occurs at 5 = 4/3 . The 

solutions DC (5) and DC (5) can be analytically continued 
---1 -2 

to the whole ray arg 5 = -;) since the differential i 



-144- 

equation (25) has no singularities for 0 < Iq < and 

arg 5 = I '  -z ' 
It should be noted that in addition to the decay 

tk and (en 5) ck the solutions DC (5) and DC (5) are not 
-1 -2 

wavelike in z for sufficiently large z or equiva- 

lently for sufficiently small 5 ; that is, the 

variation in the argument of the components of DC (5) 
-1 

and DC (5) is bounded in the vicinity of 5 = 0 . This 
-2 

is a consequence of 

arg(gk) = constant (A1 6 a) 

and arg(Rn 5) + constant (A16b) 

'IT as 5 -+ 0 for arg 5 = -Z and 

arg (= m= o -m s(j)Em) -+ constant 

CO 

as 5 -+ 0 ; that is, the components of s (j)cm tend 
-m m= 0 

to constants as 5 + 0 . Thus, in the viscous region 

the wave motion is damped and not wavelike in z . 

A.2 THE SOLUTIONS WHICH VIOLATE THE DC 

In this section the vector solutions of (25) which 

violate the DC are investigated. If k is not an inte- 

gral multiple of one-half, then the recursion relation 



(A12) i s  w e l l  d e f i n e d  f o r  j = 3 and 4 . The t h i r d  and 

f o u r t h  columns of  @(<)  d e f i n e d  i n  (Al) , e x h i b i t  t h e  

s c a l a r  growths <-k  and ( m  a s  5  -+ 0 o r  e  kz 

kz and ze a s  z + . Hence t h e  t h i r d  and f o u r t h  columns 

of @ ( t )  v i o l a t e  t h e  DC ( 1 1 ) .  I f  k i s  an i n t e g r a l  

m u l t i p l e  of  o n e - h a l f ,  t h e n  t h e  t h i r d  and f o u r t h  columns 

o f  @ ( 5 )  canno t  be  c o n s t r u c t e d  from (Al) s i n c e  t h e  

r e c u r s i o n  r e l a t i o n  (A12) i s  n o t  w e l l  d e f i n e d .  However, 

i t  can  s t i l l  b e  shown t h a t  t h e r e  e x i s t  two s o l u t i o n s ,  o f  

t h e  d i f f e r e n t i a l  e q u a t i o n  (25) , which e x h i b i t  t h e  s c a l a r  

growths t-" and (en  c ) t m k  a s  5 + 0 . Thus ,  f o r  a l l  

v a l u e s  o f  k t h e r e  e x i s t  p r e c i s e l y  two l i n e a r l y  i n d e -  

penden t  s o l u t i o n s  which s a t i s f y  t h e  DC (11) and two 

o t h e r  s o l u t i o n s  which v i o l a t e  t h e  DC.  

Cons ide r  

where 

and e  e  e  and e  a r e  t h e  column v e c t o r s  which -1' -2 '  -3 -4 

d e f i n e  So  ( s e e  (A8)) .  I t  i s  e a s i l y  v e r i f i e d  t h a t  



Suppose @ ( 5 )  i s  a  fundamenta l  s o l u t i o n  of 

e q u a t i o n  ( 2 5 ) ,  t h e n  

The symbol O(1) i s  u s e d  i n  (A21) t o  d e n o t e  t h a t  t h e  

r ema in ing  d e s c r i p t i o n  o f  t h e  c o e f f i c i e n t  m a t r i x  i s  

bounded a s  5  -+ 0 . 
A 

Suppose t h e  j t h  column of  @(S)  i s  deno ted  by  

$ (6)  and t h e  j th column o f  @ ( < )  i s  d e n o t e d  by @ . (6)  . - -7 

I f  t h e  f i r s t  two columns of  @ ( < )  a r e  chosen  t o  b e  t h e  

convergen t  expans ions  (A15), t h e n  i t  i s  e a s i l y  v e r i f i e d  

t h a t  

f o r  j = 1 o r  2 . I f  it can  a l s o  be  shown t h a t  t h e r e  

e x i s t  s o l u t i o n s  @ (5)  and 4 (5) of  e q u a t i o n  (25) such  
-3 -4 

t h a t  r e l a t i o n  (A22) i s  v a l i d  f o r  j = 3 and 4 , t h e n  

i t  immedia te ly  f o l l o w s  t h a t  - + 3 ( 5 )  and @ (5)  v i o l a t e  t h e  
-4 

DC ( 1 1 ) .  Thus,  @ ( < )  would c o n s i s t  o f  two column v e c t o r s  

which s a t i s f y  t h e  DC and two s o l u t i o n s  of  (25) which 

v i o l a t e  t h e  D C .  The remainder  of  t h i s  s e c t i o n  i s  devoted  

--- 

2 3 ~ h e  maximum norm i s  used  t h r o u g h o u t  t h i s  p a p e r ,  



t o  e s t a b l i s h i n g  t he  e x i s t e n c e  of s o l u t i o n s  - @ 3 ( 5 )  and 

m4(5) which s a t i s f y  (A22). - 

The method of a t t a c k  i s  t o  t r e a t  t h e  d i f f e r e n t i a l  

equa t ion  (A21) as  though t h e  term O(1) x @ ( < )  , on t h e  

r i g h t - h a n d  s i d e  of (A21), i s  an inhomogenous term of 

t h e  d i f f e r e n t i a l  equa t ion .  The homogenous p a r t  of t h e  

r i g h t  s i d e  of (A2l) i s  ( @(<) , t h a t  i s ,  t h e  homogenous 

d i f f e r e n t i a l  equa t ion  i s  (A20). I f  t h e  term O ( l ) x @ ( < )  

were a  known f u n c t i o n ,  then  a  c losed-form s o l u t i o n  of 

t h e  d i f f e r e n t i a l  equa t ion  (A21) could be ob ta ined  by 

t h e  method of v a r i a t i o n  of parameters .  Since  O ( l ) x @ ( < )  

i s  n o t  known, an i n d e f i n i t e  i n t e g r a l  equa t ion  i s  ob t a ined .  

Attempt t o  determine a  v e c t o r  s o l u t i o n  - $ ( c ) ,  of  

equa t ion  (A21), of t h e  form 

If equa t ion  (A23) i s  s u b s t i t u t e d  i n t o  t h e  d i f f e r e n t i a l  

equa t ion  (A21) , then 

i s  ob t a ined ,  where O(1) i s  de f ined  i n  (A21). 

I f  

s + s = i - ' ( s )  



and $ j  (<) is a continuous solution of - 

+ J S ~ ( 5 ) ~ ,  (s)o(l)9j (s) dS 9 

a 

then Oj(<) is a differentiable solution of - 

equation (A21). Let 

and m, (s) = 

Now consider the Picard iteration 

$ ' 0 '  
- j (0 5 !l- (A2 8a) 

and 

$ '"'1' 
- j  (5 )  = - $j(<) + lSg(~)~,(~)o(l)$'n'(s) o - j ds (A2 8b) 

+ JS~(<)i, (s)o(l)rn!") cs) ds , 
-3 

(A28b) 
a 



where 0 < 151 < la/ and 5, a, and S lie on the ray 

7T arg S = -Z  and j = 3 or 4 . 
LEkfMA Al: The Picard iteration, defined in (A28), 

converges for la1 > 0 sufficiently small. The con- 

vergence is uniform for each compact subset of the line 

segment 0 < 161 ( la1 and arg 5 = -$ . In addition, 

if la1 > 0 is sufficiently small, then the iterants 

satisfy the inequality 

where 

PROOF: (induction) 

Thus, for n = 0 the relation (A29) is satisfied. The 

lemma will now be established for all values of n by 

induction. Assume relation (A29) holds for some 

n - 1 2  -1 and consider 



k 

1 1, -1 (6) - -7 4 ln) (5) 1 1 i tihll ( 1  in + 1) 1;: I loin) (5) 

- 4 (n-l) (S) 1 1 x 1 ds 1 
- j 

+ [EM, ( 1  in :I + 1) I :I I I tin) (s) 

- n l ( ~ )  x Ids] 
- j 

( A 3 0 1  

where M1 and M 2  are chosen so that 

k 

for 0 < IS1 151 L la1 for some la1 > 0  . 

Similarly 

for 0  < 15) 2 1st 5 la1 . The inductive hypothesis can 

be applied to the integrand in ( A 3 0 ) .  Thus 



The f i r s t  i n t e g r a l  1' on t h e  r i g h t  s i d e  of 
0 

(A31) has a  s i n g u l a r  i n t eg rand  ( l oga r i t hmic  growth 

nea r  S  = 0 ) .  However, a  l oga r i t hmic  s i n g u l a r i t y  i s  

v e r y  weak and any power of Rn S i s  i n t e g r a b l e  on a  f i n i t e  

p o r t i o n  of t h e  r a y  a r g  S  = -2 )  pass ing  through S = 0 . ( 
Thus, t h e  i n t e g r a l  from zero t o  5  i n  (A31) s a t i s f i e s  

a s  l a l + O .  

The i n t e g r a l  from a  t o  5 i n  (A31) can be 

bounded by 

k 
However, 1 t ends  t o  zero  f a s t e r  t han  any power of 

t ends  t o  i n f i n i t y  a s  (:I t ends  t o  ze ro .  Thus, 

t h e  i n t eg rand  on t h e  r i g h t  s i d e  of (A33) i s  uniformly 

bounded f o r  0 < 151 I I S /  I la1 . There fo re ,  



If  la1 > 0 i s  chosen s u f f i c i e n t l y  s m a l l ,  then  

r e l a t i o n s  ( A 3 2 )  and ( A 3 4 )  imply 

NOTE: The v a l u e  of  t h e  cons t an t  a  can be 

chosen independent of t h e  s u p e r s c r i p t  n  s i n c e  a  must 

on ly  be chosen s u f f i c i e n t l y  smal l  t o  s a t i s f y  

f o r  0 < 151 2 la1 and c l e a r l y  t h i s  can be done s i n c e  

t h e  c o n s t a n t s  M1 and M 2  and f u n c t i o n s  $ 1 ,  /glk,  
and ma(<) do n o t  depend on t h e  s u p e r s c r i p t  n  . 

7 

Thus, r e l a t i o n  ( A 2 9 )  i s  e s t a b l i s h e d  by induc t ion ,  

bu t  ( A 2 9 )  imp l i e s  



s i n c e  

Hence, t h e  P icard  i t e r a t i o n  converges uniformly i n  5  on 

each compact subse t  of 0 < 151 5 la1 and a r g  5 = 
IT 
-2 ' 

Q . E . D .  

THEOREM A 1  : The P i ca rd  i t e r a n t s  $ (5) and 
-3 

@ (5) , def ined  i n  r e l a t i o n s  (A28), converge uniformly 
-4 

t o  t h e  s o l u t i o n s  @ (5) and @ (5) of t h e  d i f f e r e n t i a l  
-3 -4 

equa t ion  (25) , r e s p e c t i v e l y ,  and 

'lr a s  5 + 0 and a r g  5  = -Z . 
PROOF: S ince  t h e  P i ca rd  i t e r a n t s  @ ( n )  (5) converge 

- j 
uniformly f o r  each compact subse t  of 0 < 151 i la1 

IT and a r g  5  = -2 3 t hus  t h e  l i m i t  f unc t ion  @ .  ( t ) ,  where 
-3 

l i m  ( n )  
$ (5) n + ~ - j  



is a solution of the differential equation (25) for 

0 < 161 2 la1 . This follows because 4 .(5) is a con- 
-3 

tinuous solution of the integral equation (A26) and, 

hence, is a differentiable solution of the differential 

equation (25). In addition, the estimate (A29) implies 

where m. (6) is defined in lemma Al. Thus, 
1 

The integrals on the right side of (A36)  must be 

estimated separately as 5 + 0 . 

since any power of Rn - is integrable near = 0 . I :I 
The integration from a to 5 on the right side of 

(A36) is not handled so easily. For 15 1 > 0 suffi- 

ciently small the following inequality is satisfied: 



Consider 1' on the  r i g h t  s i d e  of (A36) ; then 
a  

and 

The in tegrand  on t h e  r i g h t  s i d e  of (A37) i s  bounded a s  

1 :  -+ 0 s ince  / < ~ ( 1  Yn %I + 1) i s  bounded. The f a c t o r  i n  

f r o n t  of the  i n t e g r a l  on the  r i g h t  s i d e  of (A37) i s  

obviously  o ( l ) ~ l < ( - ~ r n . ( < )  I a s  161 -+ o . 
All t h a t  remains t o  be shown i s  t h a t  



b u t  t h e  i n t e g r a n d  on t h e  r i g h t  s i d e  of (A38) i s  u n i f o r m l y  

bounded f o r  0 < 1 1 . The i n t e g r a n d  i s  i n t e g r a t e d  

over  an  i n t e r v a l  which s h r i n k s  t o  z e r o  a s  5 + 0 . 
Thus, 

Q . E . D .  



APPENDIX B 

THE IRREGULAR SINGULARITY 6 = a 

In this appendix the formal asymptotic expansions 

about 5 = are developed and investigated. Two 

methods are considered. One method of obtaining asymp- 

totic solutions, referred to as method I, consists of 

transforming the differential equation (25) until a g u e s s  

can be made concerning the form of a fundamental set of 

asymptotic expansions. The other method, called method 

11, avoids the many transformations required in method I. 

However, method I1 only determines the asymptotic expan- 

sions with algebraic growth in 5 , that! is, only the 

asymptotic expansions with lead terms which correspond to 

the inviscid solutions are determined. Multiples of the 

boundary layer and transition layer solutions can be 

determined by numerical integration. Thus, for large 

values of 5 a fundamental set of approximate solutions 

of equation (25) can be obtained by method 11. 

The proof of the existence of actual solutions of 

the differential equation (25) which are asymptotic to 

the formal expansions about the irregular singularity, 

6 = , follows a rather standard format [8, Chapter 51. 

For this reason no attempt will be made to establish 



the asymptotic nature of the formal expansions, but this 

property will be used freely. 

B.l FORXAL ASYMPTOTIC EXPANSIONS 

In this section the formal expansions of the dif- 

ferential equation (25) about the irregular singularity 

6 = are developed for four distinct cases: 

CASE 1: The roots of the dispersion relation (13) 

are distinct. In addition, 2(hl - h2) # integer and 

02/y - k2 # 0 . 
CASE 2: The roots of the dispersion relation are 

- equal or hl = X2 - 1 Z 
CASE 3: The roots of the dispersion relation 

equal an integral multiple of one-half. 

CASE 424: 02/y - k 2 = 0 .  

CASE 1: 2(hl - A,) # integer and 02/y - k 2 # 0 .  

Consider the differential equation (25) which can 

be written in the form 

a2 

n 
and where x4 <- "  converges for 15 1 > 7 

n=O 

- 

243fethod I is used for cases 1, 2, and 3; method I1 
is used for case 4. 



and for ' n  2 2 

Since A: = 0 , equation (Bl) falls in the class 

of differential equations with a nilpotent lead coeffi- 

cient matrix. The formal asymptotic solutions are not 

trivially determined for this class of differential equa- 

tions. One approach is to transform ( B l )  so tha't the 

transformed equation has a form for which an immediate 

guess can be made concerning the asymptotic solutions 

[ l o ] .  This approach (method I) will now be developed. 



The first transformation to be considered is a simi- 

larity transformation. Let 

and 

where 

The vector z[<) then satisfies the differential equation 



where 

Thus,  

and f o r  n 2 2 



and the s c a l a r  a i s  def ined i n  ( 1 3 ) .  

Now consider the shearing t ransformation 

where 

The vector  F(u) s a t i s f i e s  the d i f f e r e n t i a l  equation 



where 

* diagonal + diagonal 

CB7b) 

Thus, 



and f o r  n 2 2 

and 



-165- 

Now consider another similarity transformation. 

Let 

( 1  = ~ ; ( 7 )  , 

where 

and 

- 
then F ( T )  - satisfies the differential equation 



where 

Thus, 

% 

A. = diagonal - Z) Jr 

( B l  Ob) 

- -  - ( 3 . 2 )  ELEMENT 202  + 
Y T  



and f o r  n 2 2 

ii2 = 

(Bl lc)  

- 
0 - 2 H  x.2 

+ ( 1 . 3 )  ELEBIENT 
y2u 

0 0 L+ 2 H q  
yk2-a2 + ( 2 , J )  ELEMENT 

Y O  

G - yk2a G& + 9 + 6 ~ ( Y - u  + %(' a:ij 
yk2-a y2 3-- - ( 4 , 3 )  ELEMENT 

+ ( 3 . 1 )  ELEMENT 
- - ( 3 . 3 )  ELEMENT 

..- 

'2n-1 = 

- 

- 
0 0 0 0 

- 

0 0 0 0 

1- + (;) "-I (o2;f2)w ,, ] --(r) a 4 n-2 ~k'ra - G I  - (qn-' (2k2 - ;) 
fi 

- ( 3 , l )  ELEMENT - ( 3 , 2 )  ELEMENT (;)n-2 (2k2 - ;) -(;In-' 
- - 



(Bile) 

where 

2 
G = 5 i' k2 + (02 - yk2) (g  + k 2 )  

3 Y 
(Bllf) 

X z n  = 

Sibuya-type transformations are now considered. 

- 
0 0 0 0 

I) 

0 0 0 0 

(;)"-lG - ( ; ) n ( u 2 ; ~ : ) ~ a  ( )  - k 2 . . ~  ( )  - 2 )  + 1 - ( 4 , 3 ,  ELEMENT 

+ ( 3 , l )  ELEMENT + ( 3 , 2 ) E L E M E N T  ( : ) n - 2 { ( k 2 - i ) G + 7 T /  k2f i  - ( 3 , 3 )  ELEMENT - - 

The purpose of these transformations is to reduce the 

off-diagonal elements of the coefficient matrix to zero. 

This procedure will be modified. Only the off-diagonal 

1 elements of the matrix associated with - will be 
'r 

reduced to zero. This is a simpler task and ensures the 

convergence of the transformed coefficient matrix [lo, 

Chapter IV]. 

Let 



where 

P ( r )  = Po + -  
T '  

P o  = I ( i d e n t i t y  m a t r i x )  , 

t h e n  - X(T) s a t i s f i e s  t h e  d i f f e r e n t i a l  e q u a t i o n  

and 

dX(-c) 

d-c n=O 

PI = 

where 

- -I 

0 -(%) -(%) 
yo a 

0 0 

( - 1 ) u  _ 2k2 
- 3 -  

0 0 

+ ( 3 , l )  ELEMENT 0 0 - 4 



and for n 1. 3 

One additional transformation, a combination of 

a similarity and a Sibuya transformation, reduces C1 to 

diagonal form and leaves unchanged. Consider 

where 



and 

RECALL:  h l  and h 2  are the roots of the dispersion 

relation (13). 



Thus, 

where 

B1 = diagonal -2hl, -2A2, r ,  , 

and for n 2 3 

For sufficiently large 1 ~ 1  the expansion 2 B ~ T - "  con- 
fi= 0 

verges [lo, pp. 54,551. It is not important for the 

present analysis to determine how large must be to 

ensure convergence. It should be noted that the trans- 

formations E, F, diagonal (1, 1, 1, +) , P (T) , and P ( T )  

are nonsingular for hl # h2 , - -  cr2 k2 # 0 , and / T I  
Y 

sufficiently large. 

The differential equation (B15) can be used to 

develop formal expansions about 5 = . The matrices 

Bo and B1 suggest attempting solutions of the form 



and 

where L = a . For a finite value of L the formal 

truncated solutions are obtained. NOTE: The circumflex 
n 

( )  is introduced to denote that Z (T) is only a formal 
-i 

expansion, that is, the full infinite expansions may 

diverge. A vector - Z CT) without the circumflex will 

denote an actual solution of (B15). 

If formal solutions (Bl7) are substituted into the 

differential equation (BlS), then the following relations 

are obtained: 



and 

If the constants C in (B18) are all set equal to one, 
i 

then the lead asymptotic vectors, pO, 10, -o, r and s -0 ' 
recursively determine the remaining vectors, pn, qn, 

r and s for n = 1'2, . . .  . -n ' -n ' 
If  

and 



and 

and 

and .r = -n 

and s = -n 

then  



where 

where 



where 



where 

The formal truncated solutions satisfy the dif- 

ferential equation (B15) approximately. More precisely, 

The recursion relations (B20) through (B23) are 

well defined if 2(Al - AZ) f integer . In addition the 

transformations E ,  F ,  diagonal (1, 1, 1, ), P (T) , and 
* 0 2  P(T) require that - - k2 f 0 and 1 ~ 1  be sufficiently 

Y 
large in order for the differential equation (Bl5) to have 

a convergent expansion for its coefficient matrix. 



CASE 2 :  The r o o t s  of  t h e  d i s p e r s i o n  r e l a t i o n  (13) 

1 a r e  r e p e a t e d .  T h i s  i s  e q u i v a l e n t  t o  r e q u i r i n g  a = a 
i n  r e l a t i o n  (13) . The t r a n s f o r m a t i o n s  E , d iagona l  

( 1  I ,  ) ,  and ( j  developed f o r  c a s e  1 can be  

u s e d  f o r  t h i s  c a s e  a l s o .  However, t h e  t r a n s f o r m a t i o n  

- - I P ( T )  must be m o d i f i e d  s i n c e  hl  - h 2  - . 
Let  

where 



and 

Consider 

then  

where 

Bo = diagona l  



B 2  = P ~ ' { C , P ~  + clPl - P l ~ l  + P1} , (B28c) 

and f o r  n  2 3 

B - --1 
n 

P - P B  1 . - P o  {CnPo  + C n - l  1 1 n - 1  (B28d) 

The r a t h e r  s imple  form of  Bo and B1 s u g g e s t s  

a t t e m p t i n g  fo rmal  s o l u t i o n s  

and 

I f  a = -  I and expans ions  (BZ9) a r e  f o r m a l l y  sub-  4 

s t i t u t e d  i n t o  (B27),  t h e n  t h e  f o l l o w i n g  r e l a t i o n s  a r e  

o b t a i n e d :  



and 

If  t h e  s c a l a r s  c i  i n  ( B 3 0 )  a r e  s e t  equal  t o  one 

and c; = 0 , then  the  fol lowing r e c u r s i o n  r e l a t i o n s  a r e  

ob ta ined :  

'lr 
2 n-1 

P = -  2 n n  9 



where 



where 



and 

CASE 3: 2(X1 - h2) = integer 

If X1 and hZ differ by an odd multiple of one- 

half, then method I1 can be used. If X1 and h2 

differ by an integer, then both method I and method I1 

are difficult procedures to implement. 

If method I is attempted, then additional shearing 

and similarity transformations must be developed. This 

approach is considered in [ 8 ,  Chapter 4 1 .  

Thc main difficulty is that the recursion rela- 

tions (B2O) and (B21) are not both well defined if A1 
and A 2  differ by an integral multiple of one-half. In 

addition to the transformations E, diagonal (1, 1, 1, +), 
F, P ( - r ) ,  and F ( T )  , it is necessary to introduce a 

product of shearing, Sibuya, and similarity transforma- 

tions. 

Consider 

1 

I 
Simi x S i b  ( 7 )  x diagonal , 1, 1, J ) ~  

i=l 



and - ~ ( r )  = H(T)~(T) . ma61 

The shearing transformation, diagonal ?, 1, 1, 11, does 

not affect Bo 
i1 

in (B15). However B1 is repla-ced by 

The a matrix with eigenvalues -2\+l, -2A2, Z, Z. 

matrix Sibi(r) is constructed so that the new B1 matrix 

is block diagonal with precisely two 2x2 blocks on the 

diagonal. The matrix Siml reduces the (1,l) block to 

Jordan form. This process is repeated N times, where 

N = 2(hl - h2) . 

The net result is that 

and 

- 1 B1 has eigenvalues -2hl+N, -2h2, - and 
- 2 ' 

1 - and B1 is in Jordan canonical form. 
2 CB38c) 

This is essentially the same problem as case 2 since 

This procedure of developing several .shearing, 

Sibuya, and similarity transformations is necessary only 



if full infinite formal expansions are desired. However, 

for the purposes of this research it is necessary only to 

be assured that the lead terms in the asymptotic expan- 

sions, with algebraic growth, correspond to inviscid 

solutions and that there exist actual solutions of (25) 

which agree with the lead asymptotic terms to arbitrarily 

'IT many significant figures as T + along arg T = -- 4 . 
If the transformation H ( T )  defined in (B35) is omitted, 

then the only loss is that full infinite formal expan- 

sions are not obtained because the recursion relations 

(B20) and (B21) are not both well defined. Since no com- 

putations for this case are necessary (see comments in 

Section 5.1), it is not worthwhile to pursue this case 

any further . 
The development of formal expansions about the 

irregular singularity 5 = appears to be quite com- 

plex. A direct approach [method 11) which avoids the 

complicated transformations of the differential equation 

(25) will now be developed. The success of this approach 

is based on the observation that it is necessary only to 

determine multiples of the boundary layer and transition 

layer solutions, in equations (32) and (33), in order to 

solve the viscous problem. 

Consider the differential equation [ 2 5 )  which can 

be written in the form 



where 

The characteristic equation of A ( c )  for large 5 has the 

following approximate roots R i  : 

and 

where h l  and h 2  are the roots of the dispersion rela- 

tion (13). In addition, the eigenvectors corresponding 

to the roots R i  tend toward constants vectors as 

5 -+ . The eigenvectors corresponding to R l  and R 2  

tend towards linearly independent vectors if the roots 

of the dispersion relation (13) are distinct. The 



eigenvectors corresponding to t 3  and t4  tend towards 

linearly dependent vectors, Relations (B41) suggest 

attempting solutions25 of the form 

for i = 1 or 2 and L = w . If formal solutions with 

exponential growth jek2'6) are substituted into (B4O) , 

then the recursion relations are not well defined. Thus, 

method 11 does not yield formal solutions with exponen- 

tial growth. However, there is no difficulty in deter- 

mining formal solutions of the form (B42). 

It will be convenient to substitute directly into 

(22) rather than (B40). Consider 

where 

2 5 ~ h e  double circumflex (2)in relation (B42) denotes . . 
A 

that 2i,L(c) is a formal solution of (25) which is 
obtained by direct substit~ltion into the original dif- 
ferential equation (method 11). 



and 

S u b s t i t u t i n g  CB43) i n t o  (22)  l e a d s  t o  

2 

Y 
0 = d e t  (B44a) 

and 



A 

The matrix coefficient of is nonsingular 

in (B45b) for all n if and only if hl  and X 2  do not 

differ by an integer. Thus, it is possible to determine 

formal solutions of (22) via the recursion relation (B45) 

for A x  - h 2  f integer . 
o 2  CASE 4: - - k 2  = 0 
Y 

1 

Different normalizations of the lead vectors, R 0,i 

(i = 1 or Z ) ,  are required. 

l 1  1 

- 2  - - [('ki21\ ;I? - - - 1 (B46b) and 
Y ' 

and the remaining vectors (Xli , i = 1 or 2) can be 

determined from the recursion relation (B45b). 



Thus, there is little difficulty in determining 

formal solutions of the differential equation (22) about 

the irregular singularity 5 = . However a. fundamental 

set of formal solutions has not been obtained. Approxi- 

mate multiples of the boundary layer and transition layer 

solutions can be found instead of determining two addi- 

tional formal expansions. 

Suppose, due to (B41), it is assumed that there 

exist two solutions, ~ ~ ( 5 )  and y4 (5) , of the differential 
equation (25) which satisfy 

and 

C for some positive constants M1, M 2 ,  M 3 ,  M4, cl, c2, 3 ,  

and c4 . 
If such solutions exist, then there should be 

very little difficulty in determining multiples of these 

solutions numerically. The solution r3 (5) grows more 

'rr rapidly than ~ ( 5 )  for increasing 15 I and arg 5 = -- 2 .  

In addition, there are solutions yl(5) and ~ ~ ( 5 )  which 



f i  f i  
are asymptotic to y1 ,(<) and y2 ,(() and hence grow in 

I 

-ReX1 
I - R ~ X ~  

norm essentially like 151 and 15 1 respectively. 

Thus, y (5) grows more rapidly than ~ ~ ( 5 )  and y (5) as 
-3 -2 

'n 151 increases along the ray arg 5 = -- . 2 

Consider a numerical integration in the direction 

of increasing 151. For an arbitrary initial vector it is 

expected that the initial vector will contain nonzero 

multiples of all four solutions, y ( 0 ,  y2 (5), y3 (5)' and 
-1 

( 5 ) .  Since y (5) dominates in growth as 15 1 is 
-3 

increased, a numerical integration of (25) over a suffi- 

ciently large 151 interval in the direction of increasing 

151 should result in nearly a multiple of y3(<). Simi- 

larly, if a numerical integration of (25) is performed in 

the direc ion of decreasing 151, then a multiple of y4(5) 

can be obtained since y4 (5) has dominant .growth for 

decreasing 151 and arg 5 = 
'n 

-z ' 
The procedure (method 11) leads to very good 

agreement with the asymptotic solutions obtained by 

method I, that is, multiples of y (5) and y4 ( 5 )  are 
-3 

obtained. The agreement of these two approaches provides 

a good check on all the transformations performed in 

method I. 



B.2 PROPERTIES OF THE ASYMPTOTIC SOLUTIONS 

In this section the formal asymptotic solutions 

developed in Section B.1 are investigated, All of the 

various properties of the asymptotic expansions mentioned 

in Sections 3, 4, and 5 are developed. 

Associated with the formal asymptotic solutions in 

Section B.l there are four distinct rates of growth, 26 

20T 2 0 ~  
1 - 1 -- - - 

-2X1 
T , T -2h2, ~~e , and r e fi or equivalently 

-X 
1 

-X 
2 E , E 2 t4e , and E4e . Recall that 

-2 e < = -  
i s ~  and T = ; thus 

-2A2 
T = (iso) e ? 

T 1 
1 -20- - -2 4 -z/2 
2 and T e (B48d) 

2 6 ~ t  is tacitly assumed that hl # A 2  and 

02/y - k2 f 0 . The several special cases will also be 
investigated. 



In Section 3.2 the scalar growths r2e iY were 

investigated and it was shown that the solutions with 

these asymptotic growths are important only in the 

boundary layer and transition layer. The scalar growths 

(i~o) e and (i~cr) e are obviously the same as the 

scalar growths associated with the inviscid solutions. 

A 2 The factors (iEo)" and (iao) are merely scaling con- 

stants for a prescribed E > 0 . In addition to the 

scalar growths it is also important to investigate the 

lead vectors in the formal asymptotic expansions. 

Let 

and 

T(r) = E diagonal FP(r)G(r) , CB49c) 

1 
where the matrices E, diagonal (1, \ 1, 1, --), F, P (r) , 

- - 
h ) ,  P o ,  P1, Po, P1 are defined in Section B.1. 



Consider 

and 

yi(0 = T(T)Z. -1 (TI , (BS Ob) 

where 5 = .r2 and 2 ( T )  is defined in relation (B17). 
-i , L  

A 

Thus, xila (<) is a formal solution of (25) since -i 2 ,m (T) 

is a formal solution of (B15). If Z. (T) is an actual 
-1 

solution of the differential equation (B15), then xi ( c )  
is an actual solution of the differential equation (25). 

The formal truncated solution (5) is of the 
-i ,L 

form 

for i=l or 2 CB5la) 

and 

for j = 3 or 4 and d3 = +l and d = -1 . The vec- 
4 

tors b 
-n , i and c are determined by the transforma- 

- n , j  

tion T ( T )  and the formal truncated expansions 



A 

Z ( T )  (B17). In p a r t i c u l a r ,  t h e  v e c t o r s  b 
-i , L -0, i and 

c a r e  g i v e n  by 
-0 , j 



and 

Notice t h a t  t h e  l e a d  v e c t o r s  c  and c  a r e  mul- 
-0 , 3  -0 ,4  

t i p l e s  o f  each o t h e r .  Th i s  p a r t i a l l y  e x p l a i n s  t h e  

d i f f i c u l t y  i n  de te rmin ing  t h e  formal  asympto t i c  s o l u t i o n s  

w i th  exponen t i a l  growth.  

The formal s o l u t i o n s  (B42) can be determined from 

r e l a t i o n s  (B43) and (B45). The l e a d  asympto t i c  v e c t o r  

i s  g iven by 

f o r  i = 1 or  2 . Thus,  t h e  formal  s o l u t i o n s  (B42) have 

t h e  l e a d  asympto t i c  terms a o , l S  and a  <-12. I t  has  
- 0 , 2  -1- 

a l r e a d y  been e s t a b l i s h e d  t h a t  t h e  s c a l a r  growths 5  1 



-A 
and 5 correspond to the inviscid growths e 

A z 
and e 2  , respectively. Comparison of relations (B53) 

and (15) establishes that the lead asymptotic vectors 

a and % , 2  
correspond to the inviscid vectors. 

-0 ,1 -A. 
Note that the first and third components of a 5 1 

- 0 ,  i 

should be compared with Ui (z) and Wi (z) in (15) , respec- 

tively, due to relations (24). The second and fourth 
-A  

i dUi ('1 components of z iof i5  should be compared with -T 
dWi (z) 

and ---a;--. These comparisons are easily made since the 

normalizations of the lead asymptotic vectors a 
-0 ,1 

and 

a 
- 0 , 2  

consisted of specifying the first components of 

each of these vectors to be one. The formal solutions 

(B17) are normalized by specifying the constants ci in 

relations (B18) to be identically one for i = 1, 2, 3, 

and 4 . The lead asymptotic vectors given in 

(B52) have a rather complicated form. However, it can be 

verified that 

for i = 1 or 2 . 
Thus, the formal solutions (B17) for i = 1 or 2 

are asymptotic developments of actual solutions o f  (25) 

and the lead terms in these formal solutions correspond 

to multiples of the inviscid solutions (15). 



2 For the case o = yk2 , the normalization ( 8 4 6 )  

leads to a development of a which corresponds to the 
- -O , i  

inviscid solutions (16). 

One additional case must be considered, namely the 

case - The formal truncated solutions (B51) A, = A, - - 2 

are of the form 

and 

where j = 3 or 4 , d = +1 , and d4 = -1 . 
3 

Once again it is of interest to investigate the 

lead asymptotic terms which do not exhibit exponential 

growth or decay. Consider Lo ,I< and 



If the first and third components are compared with 

the inviscid solution [ I  in equation (181, then 

it is easily seen that b 5 is a multiple of this 
-0 ,1 

inviscid solution. Now consider 

where 



The first and third components of b4.2 do not compare 
- r -  

with the expression for K:Ffi] in relation (18). HOW- 

ever, the two-dimensional vector which is constructed 

from the first and third components of 
1 - 
2 ~ / 2 { ~  - - z b 1 is a solution of the differen- 

(iro)e -0.2 2-0.1 

tial equation (12). Hence 

i 
1 

-7 

1 
+ Z (k" S)b -0.1 5 compares with a multiple of an 

inviscid solution. 

Thus, in all cases the lead terms in the formal 

expansions with algebraic growth correspond to multiples 

of the solutions to the inviscid differential equation 

(12), that is, the lead terms are merely inviscid solu- 

tions. 



In order to distinguish the asymptotic expansions 

for the boundary and transition layer solutions, it is 

necessary to determine additional terms in the asymptotic 

expansions. The relations (B22), (B23), (B49), and (B51) 

yield 

and 

- 
where - 4 3  is the (4,3) element of Pl  defined in rela- 

Pl 

tion (B14). The same result (B59) is obtained for the 

- 1 case A l = A 2 - -  2 

LEMMA B1: The vectors b b c and c -0,l' -0,2' -0,3' -1 ,3 

defined in relations (51) are linearly independent if 

1 
- A, # integer and 02/y - k 2 # 0 .  



PROOF : 

det [b b c C 1 
-0,l' -0,2' -0,3' -1,3 

If b b c -0,l' - 0 , 2 '  -0,3' and c 
-1 ,3 are linearly dependent, 

then (B60) implies 

The hypothesis of lemma B1 excludes relations (B61). 

Hence, b b c -0,l' -0,2' -0,3' 
and c -1 ,3 are linearly inde- 

pendent. Q.E.D. 

For computational purposes it is important to 

avoid near-linear dependence or ill-conditioning of the 

vectors b b c 
-0,1' -0,2' -0,3' and -1,3 c . Although lemma B1 

implies that the vectors b b c -0~1' -0,2' -0,3' and -1,3 c are 

linearly independent for all k , it was found that for 

k 2 5 , near-linear dependence destroyed the calcula- 

tions. The error check, step 5 in the algorithm developed 

in section 4.1, implied that no significant figures were 



o b t a i n e d  f o r  t h e s e  c a l c u l a t i o n s  (k L 5 ) -  To a v o i d  t h i s  

d i f f i c u l t y  t h e  r a n g e  of  k  v a l u e s  was r e s t r i c t e d  

- (k 1 . 5 ) .  S i m i l a r l y ,  f o r  X l  = X 2  - and t h e  Lamb 

wave (021y - k 2  = 0 ) ,  good a c c u r a c y w a s  o b t a i n e d  f o r  

k 5 1 . 5  , t h a t  i s ,  t h e  problem o f  i l l - c o n d i t i o n i n g  was 

avo ided  . 
R e l a t i o n s  (B52) and (B59) imply 

C 

and TLSOL(6) z (-Lo , 3 + (B63) 
JE 

IT f o r  l a r g e  5 and a r g  5 = -- 2 No t i ce  t h a t  t h e  form o f  

t h e  v e c t o r s  c  and c  
-1 ,3  

i m p l i e s  t h a t  t h e  modulus of 
-0,3 

t h e  t h i r d  component o f  t h e  boundary l a y e r  s o l u t i o n  i s  

much s m a l l e r  t h a n  t h e  modulus of t h e  f i r s t  component.  I n  

IT 
f a c t ,  a s  + a l o n g  t h e  r a y  a r g  5 = -- 2 ' 

t h i r d  component of BLSOL (S) 

f i r s t  component of BLSOL(6) = o($) ' 
(B64) 

For E = 10 -11 t h e  r a t i o  (B64) was a p p r o x i m a t e l y  a t  

z = 0  . Thus ,  i n  most c a s e s  t h e  boundary l a y e r  s o l u t i o n  

which a r i s e s  i n  e q u a t i o n  (33) a f f e c t s  o n l y  t h e  



horizontal component of the velocity. 27 The boundary 

layer solution reduces U(z) to zero in the boundary layer 

and has a small effect on W(z). If the boundary layer is 

ignored, then the constant d2 in equation (33) can be 

accurately determined so that the kinematic boundary con- 

dition W(0) = 1 is satisfied, that is, it is only 

necessary to satisfy 

Equation (B65) will determine d, to about five signifi- 

-11 cant figures for E = 10 . Of course only the kine- 

matic boundary condition W(0) = 1 will be satisfied by 

(B65). 

Thus, the boundary layer solution has negligible 

effect on W ( z )  for all z , including z = 0 . In 

addition, it was shown in Section 3.2 that the boundary 

layer solution has negligible effect on U(z) outside a 

thin boundary layer near z = 0 . 
In Section B.l two distinct methods were developed 

for computing formal solutions which have lead terms cor- 

responding to multiples of the inviscid solutions. For 

computational purposes it is necessary to consider addi- 

tional terms in the formal expansions. Quite naturally 

2 7 ~ h e  only exception is the Lamb wave. 



the question arises as to whether or not the remaining 

terms in the two distinct developments (method I and 

method 11) are related in any way. 

So far it has been shown that 

where the vectors b -n , i and a 
-n , i are defined in (B51) 

and (B42) , respectively. 

THEOREFl B1: If relation (B66) is satisfied and 

2(X1 - X2) # integer and 02/y  - k2 # 0 , then 

and b = 0 ,  -2n-1-1, i - (36 7b) 

for i = I or 2 and n = 0,1,2,*** . 
NOTE: If theorem B1 can be established, then 

A 

there is very little difference in using (5) defined i , L  

in (B42) or -i ,2L (<) defined in (B51) for computational 

purposes. 

PROOF: Let xi(<) be a solution of the differen- 
tial equation (25) such that xi(<) is asymptotic to 
A IT 
xi ,m 

(5) as < + M along the ray arg 5 = -- 2 ' that is, 



f o r  i = 1 o r  2 and a l l  L = 0 , 1 9 2 , e 0 *  . For a  proof of 

t h e  e x i s t e n c e  of  an  a c t u a l  s o l u t i o n  x i ( < )  of  t h e  d i f f c r e n -  

t i a l  e q u a t i o n  (25) which i s  a sympto t i c  t o  gi _ ( E ) ,  s ee  
I 

[ 8 ,  Chapter  51. S i m i l a r l y ,  l e t  Y .  -1 (6) be a  s o l u t i o n  of 

t h e  d i f f e r e n t i a l  equa t i on  (25) such t h a t  Y .  -1 (5) i s  asymp- 
A 

t o t i c  t o  ( 6 )  t h a t  i s ,  

f o r  i = 1 o r  2 and a l l  k = 0 , 1 , 2 , 3 , * * *  . 
Consider  w .  (6) de f i ned  by 

-1 

Since  (25) i s  a  l i n e a r  homogenous d i f f e r e n t i a l  e q u a t i o n ,  

w .  (6) i s  a  s o l u t i o n  of (25) .  The hypo the s i s  and r e l a -  
-1 

t i o n s  (B68), (B69), and (B70) imply 

t hen  



I f  2(A1 - A,) f i n t e g e r ,  t h e n  (B71) and (B72) imply 

x1 (51 ,  y1 (51,  y2 (51 ,  y3 (5) ' and y4 (5) a r e  l i n e a r l y  

independen t  ( y 3 ( ( )  and y  (5) a r e  d e f i n e d  i n  r e l a t i o n  
-4 

( B S O ) ) ,  s i n c e  e a c h  of t h e s e  s o l u t i o n s  o f  t h e  d i f f e r e n t i a l  

e q u a t i o n  ( 2 5 )  h a s  a  d i f f e r e n t  a s y m p t o t i c  g rowth .  How- 

e v e r ,  t h i s  i s  i m p o s s i b l e  s i n c e  a  sys t em o f  f o u r  f i r s t -  

o r d e r ,  l i n e a r  d i f f e r e n t i a l  e q u a t i o n s  h a s  o n l y  f o u r  

l i n e a r l y  independen t  s o l u t i o n s .  R e l a t i o n  (B72) i s  a  con-  

sequence  of  r e l a t i o n  (B71);  t h u s  (B71) must be  i n v a l i d  o r  

b  = o .  - 1 , l  - 

A l l  t h e  c o e f f i c i e n t s  i n  t h e  a s y m p t o t i c  development  

(B72) must be z e r o ;  o t h e r w i s e  x l ( < )  3 y1(5) , z 2 ( < )  , ~ ~ ( 5 )  , 
and (5) a r e  l i n e a r l y  i n d e p e n d e n t .  S i m i l a r l y ,  

I f  any of  t h e  c o e f f i c i e n t s  i n  t h e  a s y m p t o t i c  d e v e l o p -  

ment (B73) a r e  n o n z e r o ,  t h e n  w _ ~  (<) ' y1 ( 5 ) '  y2 (< ) ,  

y 3  - (5) , and y4 (5)  a r e  l i n e a r l y  i n d e p e n d e n t .  S i n c e  t h i s  i s  

i m p o s s i b l e  i t  f o l l o w s  t h a t  

- - C x a  ) = . e *  = 
and b l ,  2 - (b-2 , 2 - 

0 Q . E . D .  
2 -1,2 



Thus, for computational purposes there is little 

difference in using either the formal expansions (B17) 

and transformations (B49) to obtain approximate values of 

the solutions of (25) with inviscid growth or the expan- 

sions (B42). 

Since the asymptotic solutions are used for com- 

putational purposes, it is necessary to obtain some error 

estimates. Consider 

A A 

(T) - Z (T)] I = O('C 
- L - 1  

-i , L  (TI11 , (B74) 

A 

as T -t 03 , , where Z (T) is defined in (B17) and Z. (T) 
- i , L  -1 

is a solution of (B15). If E > 0 is prescribed, then 

there corresponds a constant M ( E )  such that 



and 

2 0 T  
1 Re- 

'JT f o r  [ T I  > M ( E )  and a r g  T = - - .  4 I t  i s  d i f f i c u l t  t o  

de te rmine  k l ( ~ ) .  I-Iowever, a n  i n d i c a t i o n ,  n o t  a  bound, of  

t h e  e r r o r  c a n  be  found by s e t t i n g  E = 0 i n  (R75).  For 

a  s p e c i f i c  v a l u e  of T i t  would be r e a s o n a b l e  t o  t r u n -  

c a t e  t h e  e x p a n s i o n s  (B17) a t  a  v a l u e  of k such  t h a t  

r ( T ,  k )  , d e f i n e d  by 

i s  a  minimum; t h a t  i s ,  t h e  expans ions  (B17) s h o u l d  be 

t r u n c a t e d  a t  L = N , where 

~ ( T , N )  5 r ( ~ , k )  f o r  a l l  k = 0 , 1 , 2 , e e e  (B77) 

and T i s  h e l d  f i x e d .  O f  c o u r s e  N w i l l  v a r y  w i t h  t h e  

v a l u e  o f  T p r e s c r i b e d .  



Not ice  t h a t  r(T,N) p r o v i d e s  an e s t i m a t e  of  t h e  

e r r o r .  For  a  s p e c i f i c  v a l u e  of T t h e r e  w i l l  co r respond  

a  c e r t a i n  degree  o f  accuracy .  However, i t  i s  r e a s o n a b l e  

t o  r e q u i r e  a  c e r t a i n  a c c u r a c y  from t h e  expans ions  (B17) 

r a t h e r  t h a n  a c c e p t  any accuracy  t h a t  i s  p o s s i b l e  a t  a  

p r e s c r i b e d  v a l u e  of T . For example,  i f  it  i s  d e s i r e d  

t o  s a t i s f y  

t h e n  T and N must be  de te rmined .  Due t o  many c a l c u l a -  

t i o n s  i t  was e m p i r i c a l l y  e s t a b l i s h e d  t h a t  (B78) i s  s a t i s -  

f i e d  i f  

and N 2 0 .  (B79b) 

I t  i s  p o s s i b l e  t o  v e r i f y  (B79) by examining t h e  

r e c u r s i o n  r e l a t i o n  (B45) o r  

2 8 ~ o s t  of  t h e  c a l c u l a t i o n s  summarized i n  S e c t i o n  5 
were per formed on an IBM 7094 i n  s i n g l e  p r e c i s i o n  (abou t  
e i g h t  s i g n i f i c a n t  f i g u r e s )  and r e l a t i o n  (B78) was 
s a t i s f i e d .  



A c r u d e  e s t i m a t e  can  be o b t a i n e d  f o r  N and by 

examining y n ' n ! ) 2  15 1 - n .  R e c a l l  t h a t  N = 20 f o r  
a 2 n  

expans ions  (B17) i s  e q u i v a l e n t  t o  summing 10 t e rms  o f  t h e  

fo rma l  expans ion  (B42).  I t  i s  e a s i l y  v e r i f i e d  t h a t  

More g e n e r a l l y ,  i f  it  i s  r e q u i r e d  t h a t  r (T ,N)  s a t i s f y  

~ ( T , N )  , (B8 3) 

t h e n  

and 

(A i s  some p o s i t i v e  c o n s t a n t )  (B84a) 

N v a r i e s  o n l y  s l i g h t l y .  (B84b) 

S i n c e  t h e  f u n c t i o n  ~ ( T , L )  does  n o t  v a r y  s i g n i f i -  

c a n t l y  f o r  L n e a r  t h e  v a l u e  N d e f i n e d  i n  (B77),  i t  i s  

n o t  c r i t i c a l  t o  t r u n c a t e  t h e  expans ions  (B17) a t  p r e c i s e l y  

t h e  minimum te rm.  Hence, i t  i s  p o s s i b l e  t o  f i x  t h e  v a l u e  

of N w i t h  v e r y  l i t t l e  change i n  t h e  d e t e r m i n a t i o n  o f  

t h e  i n i t i a l  v e c t o r s  f o r  t h e  c a n o n i c a l  n u r i ~ e r i c a l  i n t e g r a -  

t i o n  p r o c e d u r e .  



In Section 3.2, equation (32) was developed. 

Suppose the same notation is used for the solutions of 

the differential equation (25), namely DC (5) , DC, (5) , 
-1 - 

INV1 (<) , INV2 (5) , and TLSOL(5) , and suppose the scalars - - 

el, e2, e3, and e4 are defined in (32). It is of 

interest to investigate the solutions of (32) as E -+ 0 . 
Thus, it is natural to investigate the dependence of e 1' 

e e and e4 on the parameter E for fixed values of 
2' 3 '  

a and k . 
THEOREM B2: If the sol-utions of the differential 

equation (25), which are asymptotic to multiples of the 

inviscid solutions, are required to satisfy 

Tr 
-1m (A2) 2 A 

and - INV2(<) -- e T ( W 2  m(d , (B85b) 

where and X2 are the roots of the dispersion rela- 

tion (13), T(T) is defined in (B49), and 2 (A) is 
-i ,O0 

defined in (B17), then the scalars el, e2, and e3 are 

invariant as E -+ 0 if DC (5) , DC2(t;), El (5) , and 
-1 

TLSOL(<) are linearly independent. 

PROOF: The vectors DC (5) and DC (5) are uniquely 
-1 -2 

defined. The vectors which satisfy (B85a) form a one- 

parameter family of solutions such that any two members 



of the family differ by a multiple of the transition 

layer solution. Similarly, the vectors which satisfy 

(B85b) form a one-parameter family of solutions, Thus, 

consider 

and 

The theorem is established if for arbitrary scalars A 

and B , f = e for i = 1,2, and 3 . However, equa- 
i i 

tion (B86) can be rewritten as 

If DC (5 )  , DC (5)  , INV, (5 )  , and TLSOL ( S )  are linearly 
-1 -2 - 

independent, then fl = e f2 = e f3 = e and 
1 ' 2 ' 3 ' 

f 4 + f A - B = e  3 
4 

Q.E.D. 

In general, if conditions (B85) are satisfied, 

then the scalar e can vary. In addition, if INVl(S) 
4 - 

1 
and - INV2(S) are reduced to canonical form at 5 = - , 

1 

then the scalar eq is also uniquely determined. 



THEOREM B3: 

DC1 (5) or DC2 (5)  is asymptotic to a nonzero - 
(B8 7a) 

multiple of the boundary layer solution 

and 

whenever c DC (<)+c2E2 (5) is not asymptotic 
1-1 

to a nonzero multiple of the boundary layer 

solution, then 

where f l  and f2 are nonzero if 

then the viscous problem has one and only one solution 

corresponding to every sufficiently small E > 0 for 

the following cases 

 or case c, hypotheses (B87a) and (B87b) are modi-, 
fied slightly. 



where h l  and h2 are the roots of the dispersion rela- 

tion (13) and :i ,(5) is defined in ( % S O ) .  
I 

PROOF: Due to hypothesis (B87a), either DC (5) or 
-1 

DC2(<) is asymptotic to a multiple of the boundary layer - 

solution and, hence, simply by interchanging subscripts 

it is always possible to assume DC (5) is asymptotic to a 
-1 

multiple of the boundary layer solution. Thus, without 

loss in generality assume DC (5) is asymptotic to a mul- -1 

tiple of the boundary layer solution, that is, 

where a # 0 and (5) is defined in (B50). 
3 

Consider 

For a unique value of b it is possible to eliminate the 

boundary layer solution from (5). If DC (5) is not 
-2 -2 

asymptotic to a nonzero multiple of the boundary layer 

solution, then b = 0 and if DC (5) is asymptotic to, say, 
-2 

2 
$xF3 ,(<), then b = -- . Thus, for the proper choice of 

I a 
D"C (5) is not asymptotic to a nonzero multiple of 

9 -2 

the boundary layer solution and hypothesis (B87b) implies 

A 

S2(5) " CY_l ,a, (5) + dF2 ,(El , (J389) 

where c and d are nonzero. 





1 0': and by assumption h 2  < Z, - - k2 f 0, e f 0 and g f 0 . 
Y 

Thus, relation (B91) implies that for sufficiently large 
72 

5 , q(<) and dc2(<) are linearly independent. 

- - 1 C A S E  2: hl - h2 - 7 
Relations (B55) , (B56), and (B89) imply 

+ 
Hence, relation (B92) implies that and dc2(S) are 

linearly independent for sufficiently large < . 
C A S E  3 :  021y - k2 = 0 , y = 1.4 

For this case the formal expansions were obtained 

by method 11. However, by investigating the eigenvectors 

of the matrix A(<) defined in relation (B40), it is 

expected that relation (B90) is still satisfied, that is, 

DC (<) satisfies (B90). Thus, hypothesis (B87a) is 
-1 



slightly modified and relation (B90) is assumed to hold. 

In addition, hypothesis (B87b) must be modified; that is, 

assume 

if c DC (<)+c DC (<) is not asymptotic to a nonzero mul- 
1-1 2-2 

A 
tiple of the boundary layer solution, where y (5 )  is 

- i lw 

defined in relations (B42), (B43), (B45), and (B46). 

Thus, 

and 

However, e f 0 (relation (B90) assumed), m # 0 , 
1 4 < - + h for y > - (recall y = 1.4) ; thus, and hl 

2 
-h. 

3 
-2% 

dcl(E) and &z2 ( 5 )  are linearly independent for suffi- 

ciently large 5 . Q.E.D. 



hl and A 2  are complex roots of the 

dispersion relation (13), 

DC (5) or DC ( 6 )  is asymptotic to a nonzero 
-1 --2 

multiple of the boundary layer solution, 

A 

Y1,o (5) equals a multiple of the inviscid 

solution with upward energy flux and G (5) - 2 , o  (B94c) 
equals a multiple of the inviscid solution 

with downward energy flux, 

and 

whenever c DC (<)+c DC (5) is not asymptotic 
1-1 2-2 

to a nonzero multiple of the boundary layer 

solution, then 1 - 

where a # 0 if lcll + lc2l > 0 , 1 ~ ~ 1  < 1 and 
A 

xi ,m 
(6) is defined in (BSO), then for sufficiently small 

E > 0 the viscous problem has one and only one solution. 



PROOF: Without loss in generality, assume DC (5) 
-1 

is asymptotic to a nonzero multiple of the boundary layer 

solution; that is, 

where p3 ,(<) is defined in (B50) and c # 0 . 
I 

For a unique value of b , the vector KC (5 )  
-2 

defined by 

satisfies 

where a # 0 and 1 ~ ~ 1  < 1 (due to hypothesis (B94d)). 

Let Cl (5) and g2 (5) consist of the first and third com- 

ponents of DC (5) and D"C2(<), respectively. Relations 
-1 - 



and 

where c f 0 ,  a f 0 and 1 ~ ~ 1  < 1 . 

NOTE : 

and 



Thus, 

For I K ~ I  < 1 , r e l a t i o n s  (B97), (B98), and (B99) imply 
e 

t h a t  q ( 6 )  and dc2(E)  a r e  l i n e a r l y  independent f o r  s u f f i -  

c i e n t l y  l a r g e  5  . Hence, t he  v i scous  problem has a  

unique s o l u t i o n  f o r  s u f f i c i e n t l y  smal l  E > 0 . Q . E . D .  

I t  has been t a c i t l y  assumed t h a t  k > 0 . However, 

the  l i m i t i n g  c a s e  k = 0 i s  of v a l u e .  I f  o i s  bounded 

away from zero a s  k -+ 0 , then  r e l a t i o n  (B53) imp l i e s  

t h a t  t he  i n v i s c i d  s o l u t i o n s  t end  towards s o l u t i o n s  w i th  

only  v e r t i c a l  motion.  Thus, a s  k -+ 0 t h e  wave motion 

approaches t h e  more r e s t r i c t i v e  case  of v e r t i c a l  o s c i l -  

l a t i o n s  of an i so thermal  atmosphere. The l i m i t i n g  c a s e  

k = 0 has a l r e a d y  been solved by Yanowitch [ 3 ] .  
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